[1] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10): 2722-2732. GUO H B, GONG S K, XU H B. Research progress on new high/ultra-high temperature thermal barrier coatings and progressing technologies[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2722-2732. (in Chinese) [2] 刘勇, 刘赛月, 王铀, 等. 面向高端装备关键构件的纳米热喷涂涂层[J]. 材料导报, 2016, 30(增刊1): 67-72. LIU Y, LIU S Y, WANG Y, et al. Nano thermal spraying coating facing key components in high-side equipment[J]. Materials Review, 2016, 30(S1): 67-72. (in Chinese) [3] 崔耀欣, 汪超, 何磊,等. 重型燃气轮机先进热障涂层研究进展[J]. 航空动力, 2019(2):66-69. CUI Y X, WANG C, HE L, et al. The development of advanced TBC for heavy duty gas turbines[J]. Aerospace Power, 2019(2):66-69.(in Chinese) [4] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284. [5] 余春堂,阳颖飞,鲍泽斌, 等. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403. YU C T, YANG Y F, BAO Z B, et al. Research progress in pre-paration and development of excellent bond coats for advanced thermal barrier coatings[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(5): 395-403.(in Chinese) [6] POMEROY M J. Coatings for gas turbine materials and long term stability issues[J]. Materials & Design, 2005, 26(3): 223-231. [7] 梁静静, 韦华, 侯桂臣, 等. 高温涂层材料物理、力学性能研究进展[J]. 稀有金属材料与工程, 2008, 37(7): 1134-1138. LIANG J J, WEI H, HOU G C, et al. Progress in mechanical and physical properties of high-temperature coating materials[J]. Rare Metal Materials and Engineering, 2008, 37(7): 1134-1138. (in Chinese) [8] 王东生, 田宗军, 沈理达, 等. 激光熔覆MCrAlY涂层的研究现状[J]. 机械工程材料, 2013, 37(12): 1-5. WANG D S, TIAN Z J, SHEN L D, et al. Research status of MCrAIY coatings prepared by laser cladding[J]. Materials for Mechanical Engineering, 2013, 37(12): 1-5. (in Chinese) [9] TOBAR M J, AMADO J M, YEZ A, et al. Laser cladding of MCrAlY coatings on stainless steel[J]. Physics Procedia, 2014, 56(8): 276-283. [10] SEO J W, KIM J, KWON S J, et al. Effects of laser cladding for repairing and improving wear of rails[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(7): 1207-1217. [11] 徐婷, 李华兵, 洪翔, 等. 激光熔覆TiB2颗粒增强镍基合金复合涂层的微观组织与摩擦学性能研究[J].兵工学报, 2016, 37(8): 1497-1505. XU T, LI H B, HONG X, et al. Microstructure and tribological properties of laser cladding TiB2/Ni-based alloy composite coatings[J]. Acta Armamentarii, 2016, 37(8): 1497-1505. (in Chinese) [12] 郭纯, 陈建敏, 姚润钢, 等. 激光熔覆NiCoCrAlY/ZrB2复合涂层结构及高温耐磨性能[J]. 稀有金属材料与工程, 2013, 42(8): 1547-1551. GUO C, CHEN J M, YAO R G, et al. Microstructure and high temperature wear resistance of laser cladding NiCoCrAlY/ZrB2 coating[J]. Rare Metal Materials and Engineering, 2013, 42(8): 1547-1551. (in Chinese) [13] TABERNERO I, LAMIKIZ A, MARTNEZ S, et al. Evaluation of the mechanical properties of Inconel 718 components built by laser cladding[J]. International Journal of Machine Tools & Manufacture, 2011, 51(6): 465-470. [14] 练国富, 姚明浦, 陈昌荣,等. 激光熔覆多道搭接成形质量与效率控制方法[J]. 表面技术, 2018, 47(9): 229-239. LIAN G F, YAO M P, CHEN C R, et al. Control of the quality and efficiency of multi-track overlapping laser cladding[J]. Surface Technology, 2018, 47(9): 229-239. (in Chinese) [15] ZHANG Y, TENG F H, XIAO M, et al. Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating[J]. International Journal of Minerals Metallurgy and Materials, 2020, 27(5): 630-639. [16] EMAMIAN A, CORBIN S F, KHAJEPOUR A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings[J]. Surface & Coatings Technology, 2010, 205(7): 2007-2015. [17] ZHOU C Y, ZHAO S S, WANG Y B, et al. Mitigation of pores generation at overlapping zone during laser cladding[J]. Journal of Materials Processing Technology, 2015, 216: 369-374. [18] ERFANMANESH M, ABDOLLAH-POUR H, MOHAMMADIAN-SEMNANI H, et al. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel[J]. Optics & Laser Technology, 2017, 97: 180-186. [19] WENG Z K, WANG A H, XIONG D H, et al. Diode laser cladding of Fe-based alloy on ductile cast iron and related interfacial behavior[J]. Surface & Coatings Technology, 2016, 286: 64-71. [20] 赵尧, 虞钢, 何秀丽, 等. 基于主成分分析法与逼近理想解法的38MnVS6激光熔覆工艺研究[J]. 兵工学报, 2019, 40(12): 2537-2544. ZHAO R, YU G, HE X L, et al. Research on laser cladding processing for 38MnVS6 by PCA-TOPSIS Method[J]. Acta Armamentarii, 2019, 40(12): 2537-2544. (in Chinese) [21] 童文辉, 张新元, 李为轩, 等. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274. TONG W H, ZHANG X Y, LI W X, et al. Effect of laser process parameters on the microstructure and properties of TiC reinforced Co-based alloy laser cladding layer[J]. Acta Metallurgica Sinica, 2020, 56(9): 1265-1274. (in Chinese) [22] LUO G Y, XIAO H, LI S M, et al. Quasi-continuous-wave laser surface melting of aluminium alloy: precipitate morphology, solute segregation and corrosion resistance[J]. Corrosion Science, 2019, 152: 109-119. [23] ZHANG N, LIU W W, DENG D W, et al. Effect of electric-magnetic compound field on the pore distribution in laser cladding process[J]. Optics & Laser Technology, 2018, 108: 247-254. [24] ZHONG C L, GASSER A, KITTEL J, et al. Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition[J]. Materials & Design, 2016, 98: 128-134. [25] CAI J G, YANG S Z, JI L, et al. Surface microstructure and high temperature oxidation resistance of thermal sprayed CoCrAlY coating irradiated by high current pulsed electron beam[J]. Surface and Coatings Technology, 2014, 251: 217-225. [26] CAI J, GUAN Q F, HOU X L, et al. Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by high-current pulsed electron beam[J]. Applied Surface Science, 2014, 317: 360-369. [27] 关庆丰, 顾倩倩, 李艳, 等. 强流脉冲电子束作用下金属纯Cu的微观结构状态-变形结构[J]. 物理学报, 2011, 60(8): 508-514. GUAN Q F, GU Q Q, LI Y, et al. Microstructures in polycrystalline pure copper induced by high-current pulsed electron beam-deformation structures[J]. Acta Physica Sinica, 2011, 60(8): 508-514. (in Chinese) [28] 程笃庆, 关庆丰, 朱健, 等.强流脉冲电子束诱发纯镍表层纳米结构的形成机制[J]. 物理学报, 2009, 58(10): 7300-7306. CHENG D Q, GUAN Q F, ZHU J, et al. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam[J]. Acta Physica Sinica, 2009, 58(10):7300-7306. (in Chinese) [29] JEYAPRAKASH N, YANG C H, RAMKUMAR K R. Microstructure and wear resistance of laser cladded Inconel 625 and Colmonoy 6 depositions on Inconel 625 substrate[J]. Applied Physics A, 2020, 126(6):455. [30] GUO C, ZHOU J S, CHEN J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings[J]. Wear, 2011, 270(7/8): 492-498. [31] JEYAPRAKASH N, YANG C H, DURAISELVAM M, et al. Microstructure and tribological evolution during laser alloying WC-12%Co and Cr3C225%NiCr powders on nodular iron surface[J]. Results in Physics, 2019, 12:1610-1620.
|