[1] GNANAMUTHU D S.High temperature coatings by surface melting: US.3952180 [P]. 1976-04-08. [2] MAZUMDER J, STEEN W M. Heat transfer model CW laser material processing [J]. Applied Physics, 1980, 51(2): 941-947. [3] BRUCKER F, LEPSKI D, BEYER E.Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding[J].Journal of Thermal Spray Technology, 2007, 16 (3): 355-373. [4] KOU S, SUN D K. Fluid flow and weld penetration in stationary arc welds[J]. Metallurgical Transactions A, 1985, 16(2): 203-213. [5] FOROOZMEHR E, KOVACEVIC R. Effect of path planning on the laser powder deposition process: thermal and structural evaluation[J]. International Journal of Advanced Manufacturing Technology, 2010, 51(5/6/7/8): 659-669.
图15 激光熔覆中G和S对熔池凝固组织的影响 Fig.15 Effects of G and S on the morphology of solidifled microstructure in the process of laser cladding
图16 激光熔覆过程中G变化 Fig.16 Cloud charts of G during laser cladding
图17 熔覆层的实验剖面与A、B、C点位置的微观组织 Fig.17 Microstructures at the positions A, B and C on experimental cross-section of cladding layer
[6] FARAHMAND P, KOVACEVIC R . An experimental-numerical investigation of heat distribution and stress field in single-and multi-track laser cladding by a high-power direct diode laser[J]. Optics and Laser Technology, 2014, 63(11): 154-168. [7] GAO W Y, ZHAO S S, WANG Y B, et al. Numerical simulation of thermal field and Fe-based coating doped Ti[J]. International Journal of Heat & Mass Transfer, 2016, 92(1):83-90. [8] PICASSO M, HOADLEY A F A . Finite element simulation of laser surface treatments including convection in the melt pool[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 1994, 4(1):61-83. [9] TOYSERKANI E, KHAJEPOUR A, CORBIN S. Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feedrate and travel speed on the process[J]. Journal of Laser Applications, 2003, 15(3):153.
[10] GAN Z T, YU G, HE X L, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J]. International Journal of Heat and Mass Transfer, 2017, 104:28-38. [11] LUGSCHEIDER E, BOLENDER H, KVAPPITZ H. Laser cladding of paste bound hardfacing alloys[J].Surface Engineering, 1991, 7(4): 341-346. [12] FELLOWS F C J, STEEN W M, COLEY K S.Ceramic coatings for high temperature corrosion resistance by laser processing[J]. Key Engineering Materials, 1990, 46/47: 435-446. [13] 周佳平.激光沉积制造应力演化及其控制[D].沈阳:沈阳航空航天大学,2016:15-20. ZHOU J P. Research on stress evolution mechanism and control of laser deposition manufacturing[D]. Shenyang: Shenyang Aerospace University, 2016: 15-20. (in Chinese) [14] 王福雨,刘伟军,赵宇辉.复杂薄壁零件激光快速成型过程热力耦合场的数值模拟[J].机械工程学报,2013,49(5):192-198.
WANG F Y, LIU W J, ZHAO Y H. Thermo-mechanical coupling field simulation of complex thin-wall part laser rapid prototype process[J]. Journal of Mechanical Engineering, 2013, 49(5): 192-198. (in Chinese) [15] 龙日升,刘伟军,卞宏友.扫描方式对激光金属沉积成形过程热应力的影响[J].机械工程学报,2007,43(11):74-81. LONG R S, LIU W J, BIAN H Y. Effects of scanning methods on thermal stress during laser metal deposition shaping[J]. Chinese Journal of Mechanical Engineering, 2007, 43(11): 74-81. (in Chinese) [16] 李嘉宁.激光熔覆技术及应用[M].北京:化学工业出版社,2016:93-94. LI J N. Laser cladding technology and its application[M]. Beijing: Chemical Industry Press, 2016: 93-94. ( in Chinese)
[17] 陈小明,王海金,周夏凉,等.激光表面改性技术及其研究进展[J].材料导报,2018,32(增刊1):341-344. CHEN X M, WANG H J, ZHOU X L,et al. Laser surface modification technology and research progress[J]. Materials Review, 2018, 32(S1): 341-344. (in Chinese) [18] REDDY L, PRESTON S P, SHIPWAY P H, et al. Process parameter optimisation of laser clad iron based alloy: predictive models of deposition efficiency, porosity and dilution[J]. Surface and Coatings Technology, 2018, 349(17):198-207. [19] HE X, MAZUMDER J . Transport phenomena during direct metal deposition[J]. Journal of Applied Physics, 2007, 101(5):053113-1-053113-9.
第40卷第6期 2019 年6月兵工学报ACTA ARMAMENTARIIVol.40No.6Jun.2019
|