[1] |
龚诗雄, 王旭, 孔国杰, 等. 多车协同目标跟踪方法[J]. 兵工学报, 2022, 43(10):2429-2442.
|
|
GONG S X, WANG X, KONG G J, et al. Multi-vehicle cooperative target tracking method[J]. Acta Armamentarii, 2022, 43(10):2429-2442. (in Chinese)
|
[2] |
刘桂宇. 面向激光雷达点云的三维目标识别算法研究综述[J]. 信息记录材料, 2022, 23(4):243-245.
|
|
LIU G Y. A review of 3D object recognition algorithms for LiDAR point clouds[J]. Information Recording Materials, 2022, 23(4):243-245. (in Chinese)
|
[3] |
霍威乐, 荆涛, 任爽. 面向自动驾驶的三维目标检测综述[J]. 计算机科学, 2023, 50(7):107-118.
doi: 10.11896/jsjkx.220700090
|
|
HUO W L, JING T, REN S. A review of 3D object detection for autonomous driving[J]. Computer Science, 2023, 50(7):107-118. (in Chinese)
doi: 10.11896/jsjkx.220700090
|
[4] |
VASCONCELOS C, BIRODKAR V, DUMOULIN V. Proper reuse of image classification features improves object detection[C]// Proceedings of Conference on Computer Vision and Pattern Recognition.New Orleans,LA,US:IEEE, 2022:13628-13637.
|
[5] |
ZHANG R R, GUO Z Y, FANG R Y, et al. Point-M2AE:multi-scale masked autoencoders for hierarchical point cloud pre-training[J]. Advances in Neural Information Processing Systems, 2022, 35:27061-27074.
|
[6] |
CAESAR H, BANKITI V, LANG A H, et al. nuscenes:a multimodal dataset for autonomous driving[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Seattle,WA,US:IEEE, 2020:11621-11631.
|
[7] |
汪萌, 诸兵. 不确定性建模在2D和3D目标检测中的应用[J]. 系统工程与电子技术, 2023, 45(8) :2370-2376.
doi: 10.12305/j.issn.1001-506X.2023.08.10
|
|
WANG M, ZHU B. Application of uncertainty modeling in 2D and D target detection[J]. Systems Engineering and Electronics, 2023, 45(8) :2370-2376. (in Chinese)
|
[8] |
XU X W, WANG Y F, ZHENG Y, et al. Back to reality:weakly-supervised 3D object detection with shape-guided label enhancement[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans,LA,US:IEEE, 2022:8438-8447.
|
[9] |
MEYER G, THAKURDESA N. Learning an uncertaintyaware object detector for autonomous driving[C]// Proceedings of IEEE International Conference on Intelligent Robots and Systems.Las Vegas,NV,US:IEEE, 2020:10521-10527.
|
[10] |
HE K M, CHEN X L, XIE S N, et al. Masked autoencoders are scalable vision learners[C]// Proceedings of Conference on Computer Vision and Pattern Recognition.New Orleans,LA,US:IEEE, 2022:16000-16009.
|
[11] |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics:the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11):1231-1237.
|
[12] |
SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving:Waymo open dataset[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Seattle,WA,US:IEEE, 2020:2446-2454.
|
[13] |
CHEN Y, LIU J, ZHANG X, et al. Voxelnext:fully sparse voxelnet for 3d object detection and tracking[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver,BC,Canada:IEEE, 2023:21674-21683.
|
[14] |
HU R, CAO F L, WANG W J. A novel complementary dual-aware network for point cloud classification[J]. Engineering Applications of Artificial Intelligence, 2024, 137:109224.
|
[15] |
YAN Y, MAO Y X, LI B. Second:Sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10):3337-3354.
|
[16] |
谢兄, 杨金鹏. YOLO-wLU:考虑定位不确定性的目标检测算法[J]. 计算机工程与应用, 2021, 57(22):223-231.
doi: 10.3778/j.issn.1002-8331.2007-0234
|
|
XIE X, YANG J P. YOLO-wLU:an object detection algorithm considering localization uncertainty[J]. Computer Engineering and Applications, 2021, 57(22):223-231. (in Chinese)
|
[17] |
PSAROS A F, MENG X H, ZOU Z R, et al. Uncertainty quantification in scientific machine learning:Methods,metrics,and comparisons[J]. Journal of Computational Physics, 2023, 477:111902.
|
[18] |
WANG Z, DAHL G E, SWERSKY K, et al. Pre-trained Gaussian processes for Bayesian optimization[J]. Journal of Machine Learning Research, 2024, 25(212):1-83.
|
[19] |
LIANG A, HUA H Y, FANG J, et al. Boosting 3D point-based object detection by reducing information loss caused by discontinuous receptive fields[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 132:104049.
|
[20] |
KONG X H, LI X J, ZHU X X, et al. Detection model based on improved faster-RCNN in apple orchard environment[J]. Intelligent Systems with Applications, 2024, 21:200325.
|
[21] |
KINGMA D, BA J. Adam:a method for stochastic optimization[C]// Proceedings of the 3rd International Conference on Learning Representations.San Diego,CA,US:ICLR, 2015:1-15.
|
[22] |
MARK E, LUC V, CHRISTOPHER K, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88:303-338.
|
[23] |
YIN T W, ZHOU X Y, KRAHENBUHL P. Center-based 3D object detection and tracking[C]// Proceedings of IEEE International Conference on Computer Vision.Nashville,TN,US:IEEE, 2021:11784-11793.
|
[24] |
CHEN Y K, LI Y W, ZHANG X Y, et al. Focal sparse convolutional networks for 3D object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans,LA,US:IEEE, 2022:5428-5437.
|