欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (1): 231124-.doi: 10.12382/bgxb.2023.1124

• • 上一篇    下一篇

基于多尺度注意力机制的无人机小目标检测算法

冯迎宾, 郭枭尊*(), 晏佳华   

  1. 沈阳理工大学 自动化与电气工程学院,辽宁 沈阳 110159
  • 收稿日期:2023-11-22 上线日期:2025-01-25
  • 通讯作者:
  • 基金资助:
    辽宁省教育厅高校基础科研项目(LJKMZ20220614); 辽宁省属本科高校基本科研业务费专项项目(SYLUGXRC44)

Small UVA Target Detection Algorithm Based on Multi-scale Attention Mechanism

FENG Yingbin, GUO Xiaozun*(), YAN Jiahua   

  1. College of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China
  • Received:2023-11-22 Online:2025-01-25

摘要:

针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_ YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster Block_C2f,EF_C2f),替换YOLOv8网络中的C2f模块,提高网络对小目标特征的提取能力;在特征融合网络中增加P1检测层,并设计一种跨尺度特征融合结构(Bi-Path Aggregation Network,BPAN),融合小目标特征信息;增加一个微小目标检测头,使用SIoU Loss作为边界框损失函数,提升小目标检测精度和网络收敛速度。在公开数据集VisDrone2019上进行实验验证。验证结果表明:与YOLOv8s算法相比,新算法在检测精度上提升了6.9%、mAP50提升了9.1%,模型参数量减少了44.6%,检测速度为28帧/s,新算法在小目标检测领域具有一定的实用性。

关键词: 多尺度注意力机制, YOLOv8s算法, 特征提取, 跨尺度特征融合, 小目标检测

Abstract:

A SBE_YOLOv8s small target detection algorithm based on multi-scale attention mechanism is proposed for the UAV aerial images with high density,small target size and complex background.First,a feature extraction module EF_C2f(EMA-Faster Block_C2f) based on the multi-scale attention mechanism is designed to replace the C2f module in the YOLOv8 network to improve the network’s ability to extract small target features.And then a P1 detection layer is added to the feature fusion network,and a cross-scale feature fusion structure BPAN(Bi-Path Aggregation Network) is designed to fuse the small target feature information.Finally,a tiny target detection head is added,and SIoU Loss is used as the bounding-box loss function to improve the detection accuracy of small targets and the convergence speed of the network.The proposed algorithm is validated on the public dataset VisDrone2019.Compared with YOLOv8s algorithm,the proposed algorithm improves the detection accuracy by 6.9% and mAP50 by 9.1%,and reduces the amount of parameters of the model is by 46.4%,and the detection speed is 28 fps.The experimental results show that the proposed algorithm has a certain degree of utility in the field of small target detection.

Key words: multi-scale attention mechanism, YOLOv8s algorithm, feature extraction, cross-scale feature fusion, small target detection

中图分类号: