欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于点云掩码预训练与高斯定位不确定性估计的激光雷达目标检测方法

冯宇, 谢光达, 刘龙, 苏云泉, 刘珺玮, 耿艳东, 苗蕾   

  1. 内蒙古第一机械集团股份有限公司科研所
  • 收稿日期:2024-09-03 修回日期:2025-04-27

LiDAR Object Detection Method Based on Point Cloud Mask Pre-training and Gaussian Localization Uncertainty Estimation

FENG Yu, XIE Guangda*,LIU Long,; SU Yunquan, LIU Junwei, GENG Yandong, MIAO Lie   

  1. Scientific Research Institution of Inner Mongolia First Machinery Group Co., Ltd.
  • Received:2024-09-03 Revised:2025-04-27

摘要: 激光雷达获取的三维点云数据是自动驾驶的关键数据源,但其标注难度大、数据量有限且标签不确定性高,限制了基于深度学习的三维目标检测模型的训练效果。针对以上问题,提出点云掩码策略构建预训练数据集,结合迁移学习提升模型检测精度;提出基于高斯分布的定位不确定性估计建模方法,使目标检测模型在预测边界框坐标的同时预测每个坐标的定位不确定性。实验结果表明,在不明显增加算法复杂度的前提下,新方法有效减少了误检现象,显著提高了目标检测的准确性。

关键词: 激光雷达, 目标检测, 点云掩码, 不确定性估计

Abstract: The 3D point cloud data acquired by LiDAR is crucial for autonomous driving. However, the annotation of point cloud data is difficult; the available data is limited; and there is usually a large degree of uncertainty in its labels, which constrains the effectiveness of deep learning-based 3D object detection models. To address these issues, this paper proposes a point cloud masking strategy to construct a pre-training dataset, combined with transfer learning to improve detection accuracy. Additionally, a Gaussian distribution-based localization uncertainty estimation modeling method is proposed, enabling the object detection model to predict the localization uncertainty of each coordinate while predicting the bounding box coordinates. Experimental results demonstrate that, without significantly increasing algorithmic complexity, the proposed method effectively reduces false detections and significantly improves the accuracy of object detection.

Key words: LiDAR, object detection, point cloud mask, uncertainty estimation

中图分类号: