欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240918-.doi: 10.12382/bgxb.2024.0918

• • 上一篇    

基于动态特征的海上弹着点水柱检测跟踪算法

桂凡, 石章松*(), 孙世岩, 应文健, 胡卫强, 徐慧慧, 吴中红, 胡清平, 张俊   

  1. 海军工程大学, 湖北 武汉 430033
  • 收稿日期:2024-10-05 上线日期:2025-05-07
  • 通讯作者:
  • 基金资助:
    湖北省自然科学基金项目(2024AFB404)

Detection and Tracking of Water Columns at Marine Impact Points Based on Dynamic Features

GUI Fan, SHI Zhangsong*(), SUN Shiyan, YING Wenjian, HU Weiqiang, XU Huihui, WU Zhonghong, HU Qingping, ZHANG Jun   

  1. Naval University of Engineering, Wuhan 430033, Hubei, China
  • Received:2024-10-05 Online:2025-05-07

摘要:

利用可见光图像对海上弹着点水柱进行有效检测与跟踪,是实现海上自动检靶的核心。由于相机的运动、焦距的调节以及水柱的变化,现有的检测与跟踪算法依然存在较高的误报率和身份切换次数(Identity Switch Times,IDs)。为解决上述问题,提出一种基于动态特征的海上弹着点水柱检测跟踪算法。利用YOLOv8目标检测器对静态水柱进行检测,通过在浅层特征图上增加小目标检测头,增强模型对小水柱的检测能力;利用改进的ByteTrack跟踪器对水柱进行跟踪,将相机运动和卡尔曼滤波相结合,补偿由相机运动引起的跟踪偏移;结合水柱形成阶段的时空特征,采用支持向量机进行综合决策,实现对水柱的判断。实验结果表明,与传统的检测跟踪算法相比,新算法在多目标跟踪准确度、识别平均数比率和多目标跟踪精确度这3个关键性能指标上分别提升了7.8%、5.1%和0.9%;误报数减少了112次,IDs数和误检数均降至0,表明新算法不仅能够精确地检测和跟踪水柱,还能够有效地排除其他干扰因素,在整体性能上实现显著的增强。

关键词: 动态特征, 运动估计, 目标检测, 目标跟踪, ByteTrack

Abstract:

The effective detection and tracking of water columns at marine impact points using visible light images is key to automatically check a target at sea. The existing detection and tracking algorithms still have a high false alarm rate and identity switch times (IDs) due to the movement of camera, the adjustment of focal length, and the changes of water columns. To solve the above problems, this paper proposes a detection and tracking algorithm based on dynamic features for water columns at marine impact points. The YOLOv8 target detector is used to detect the static water columns, and a small target detection head is added to the shallow feature map to enhance the model’s ability to detect small water columns. An improved ByteTrack tracker is used to track the water columns, and the tracking offsets caused by camera movement is compensated by combining camera movement and Kalman filtering. And then, a support vector machine is used for comprehensive decision-making to judge the water columns according to the spatiotemporal features of the water columns formation stage. Compared with traditional detection and tracking algorithms, the proposed algorithm is used to improve the three key performance indicators of multiple object tracking accuracy (MOTA), identification F1 (IDF1), and multiple object tracking precision (MOTP) by 7.8%, 5.1%, and 0.9%, respectively, the number of false positives (FP) is reduced by 112 times, and the numbers of IDs and false detections are both reduced to zero. Experimental results show that the proposed algorithm can not only accurately detect and track the water columns but also effectively exclude other interfering factors, thus achieving a significant enhancement in overall performance.

Key words: dynamic feature, motion estimation, target detection, target tracking, ByteTrack

中图分类号: