欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (10): 2975-2983.doi: 10.12382/bgxb.2022.0511

• • 上一篇    下一篇

基于卷积神经网络与长短期记忆神经网络的弹丸轨迹预测

郑志伟1, 管雪元1,*(), 傅健2, 马训穷3, 尹上3   

  1. 1 南京理工大学 瞬态物理国家重点实验室, 江苏 南京 210094
    2 南京理工大学 能源与动力工程学院, 江苏 南京 210094
    3 上海航天电子技术研究所, 上海 201108
  • 收稿日期:2022-06-10 上线日期:2023-10-30
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(61603191); 国家自然科学基金项目(61603189)

Projectile Trajectory Prediction Based on CNN-LSTM Model

ZHENG Zhiwei1, GUAN Xueyuan1,*(), FU Jian2, MA Xunqiong3, YIN Shang3   

  1. 1 National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2 School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    3 Shanghai Aerospace Electronic Technology Institute, Shanghai 201108, China
  • Received:2022-06-10 Online:2023-10-30

摘要:

针对弹丸非线性轨迹预测问题,提出一种基于卷积神经网络(CNN)与长短期记忆(LSTM)神经网络的混合轨迹预测模型。通过建立6自由度弹丸运动模型,并使用4阶龙格库塔法外弹道仿真,得到大量轨迹数据样本;提出CNN-LSTM神经网络的混合轨迹预测模型,并利用滑动窗口法和差分法构造输入输出的轨迹数据对,将预测问题转化为有监督的学习问题;将所提模型与LSTM神经网络模型、门控循环单元(GRU)神经网络模型和反向传播(BP)神经网络模型在同一数据集下进行仿真实验。研究结果表明,CNN-LSTM神经网络模型预测3s后的平均累积预测误差在x轴方向约为14.83m,y轴方向约为20.77m,z轴方向约为0.75m,且轨迹预测精度优于单一模型,为弹丸轨迹预测研究提供了一定的参考。

关键词: 弹道模型, 深度学习, 监督学习, 卷积神经网络与长短期记忆神经网络模型, 轨迹预测

Abstract:

To solve the problem of nonlinear trajectory prediction of projectile, a novel hybrid trajectory prediction model based on convolutional neural network (CNN) and long and short-term memory (LSTM) neural network is proposed. A 6DOF projectile movement model is established, and a substantial dataset of trajectory samples is obtained through exterior ballistics simulations employing the four-order Runge-Kutta method. Secondly, the hybrid CNN-LSTM trajectory prediction model is proposed, and the input and output trajectory data pairs are constructed by using the sliding window method and first-order difference method, which transforms the prediction problem into a supervised learning problem. Then, the proposed model is compared with LSTM neural network model, gated recurrent unit (GRU) neural network model and back propagation (BP) neural network model using the same dataset. The results show that the average cumulative prediction error of CNN-LSTM model after 3s is about 14.83m in the x-axis direction, 20.77m in the y-axis direction and 0.75m in the z-axis direction. The trajectory prediction accuracy of CNN-LSTM neural network model is better than that of a single model, which provides valuable insights for advancing projectile trajectory prediction research.

Key words: ballistic model, deep learning, supervised learning, CNN-LSTM neural network model, trajectory prediction

中图分类号: