欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2023, Vol. 44 ›› Issue (9): 2622-2630.doi: 10.12382/bgxb.2022.1114

所属专题: 智能系统与装备技术

• • 上一篇    下一篇

基于光照感知的多光谱融合行人检测方法

彭沛然1, 任术波2, 李佳男1, 周鸿伟2, 许廷发1,*()   

  1. 1 北京理工大学 光电学院, 北京 100081
    2 中国空间技术研究院 通信与导航卫星总体部, 北京 100094
  • 收稿日期:2022-11-29 上线日期:2023-07-28
  • 通讯作者:
  • 基金资助:
    国家自然科学基金青年基金项目(202020429036)

Illumination-aware Multispectral Fusion Network for Pedestrian Detection

PENG Peiran1, REN Shubo2, LI Jianan1, ZHOU Hongwei2, XU Tingfa1,*()   

  1. 1 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
    2 Institute of Telecommunication and Navigation Satellites, China Academy of Space Technology, Beijing 100094, China
  • Received:2022-11-29 Online:2023-07-28

摘要:

多光谱行人检测在智能安防、自动驾驶等领域得到广泛应用。在光照较弱或存在遮挡的情况下,行人检测的准确性和鲁棒性仍然面临挑战。为解决这个问题,提出一种新的光照感知跨光谱融合行人检测网络。该网络利用交叉注意力和光照感知机制来充分利用多光谱特异性特征,以提高行人检测的鲁棒性和准确性。为增强两光谱之间特征表达,引入交叉注意力模块。此外提出一个光照感知子网络,它能够根据可见光和红外光谱的光照强度变化自适应地选择有效的光谱特征信息,从而提高检测系统的鲁棒性。在两个主流的多光谱行人数据集上进行了实验。实验结果显示,新方法在检测精度和检测速度方面都优于现有方法,所得成果对于提高行人检测模型的鲁棒性和泛用性具有重要意义,并在实际应用中具有广泛的潜力。

关键词: 多光谱融合检测, 行人检测, 深度学习, 注意力机制

Abstract:

Multispectral pedestrian detection has been widely applied in scenarios such as intelligent security and autonomous driving. However, the accuracy and robustness of pedestrian detection still face challenges, especiallyin low-light conditions or in scenarios with occlusions. To address this issue, a novel pedestrian detection network is proposed, which is namedillumination-aware cross-spectral fusion network. Thenetwork leverages cross-attention and illumination-aware mechanisms to fully exploitmulti-spectral specific features, thereby improving the robustness and accuracy of pedestrian detection. To enhance feature representation between the two spectra, a cross-attention module is introduced. Additionally, an illumination-aware sub-network is proposed, which adaptively selects effective spectral feature information based on the illumination intensity variations of visible and infrared spectra, thusimproving the robustness of the detection system. Experiments areconducted on two multi-spectral pedestrian detection datasets, the KAIST dataset and the CVC-14 dataset. The experimental results demonstratethat theproposed method outperforms existing methods in terms of detection accuracy and speed. This achievementis of significant importance for enhancing the robustness and versatility of pedestrian detection models,with broad potential for practical applications.

Key words: multispectral fusion detection, pedestrian detection, deep learning, attention mechanism

中图分类号: