兵工学报 ›› 2023, Vol. 44 ›› Issue (9): 2639-2649.doi: 10.12382/bgxb.2022.1162
所属专题: 智能系统与装备技术
收稿日期:
2022-11-30
上线日期:
2023-02-28
通讯作者:
基金资助:
QIN Haolin1, XU Tingfa1,2,3, LI Jianan1,3,*()
Received:
2022-11-30
Online:
2023-02-28
摘要:
高光谱显著性目标检测技术在伪装识别、异常检测等领域展现了惊人的潜力,并得到了广泛的关注。基于深度学习技术的神经网络模型克服了传统算法检测精度低、鲁棒性弱的缺点,但是数据标注成本限制了其进一步发展。为此提出了一种超像素注意力孪生半监督算法,使用少量全监督数据和大量弱监督数据进行训练,有效降低了标注成本。该算法由孪生预测模块和注意力辅助模块组成,其中孪生预测模块捕获弱标签隐式约束并生成显著性结果图,注意力辅助模块利用超像素级通道注意力机制优化预测结果。新提出的超像素注意力孪生半监督算法在高光谱数据集上实现了87%的检测精度,优于其他流行算法,在有效降低标注成本的同时具有优异的显著性检测性能。
中图分类号:
秦昊林, 许廷发, 李佳男. 基于超像素注意力和孪生结构的半监督高光谱显著性目标检测[J]. 兵工学报, 2023, 44(9): 2639-2649.
QIN Haolin, XU Tingfa, LI Jianan. Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure[J]. Acta Armamentarii, 2023, 44(9): 2639-2649.
算法 | MAE | Favg | Fmax | AUC | NSS |
---|---|---|---|---|---|
GS算法 | 0.1787 | 0.1709 | 0.2703 | 0.6191 | 0.9505 |
SAD算法 | 0.1920 | 0.1855 | 0.2987 | 0.5967 | 0.8377 |
SED算法 | 0.1255 | 0.1273 | 0.2970 | 0.5826 | 0.7203 |
SED-GS算法 | 0.1856 | 0.1545 | 0.3078 | 0.6051 | 0.8836 |
SED-SAD算法 | 0.2023 | 0.1818 | 0.2998 | 0.6337 | 1.2311 |
SUDF算法 | 0.1687 | 0.5451 | 0.5472 | 0.8685 | 1.9627 |
U2Net†算法 | 0.1122 | 0.6525 | 0.6599 | 0.8569 | 1.5000 |
本文算法 | 0.1380 | 0.6482 | 0.6508 | 0.8703 | 1.3611 |
表1 HSOD-C实验结果
Table 1 Test results on HSOD-C
算法 | MAE | Favg | Fmax | AUC | NSS |
---|---|---|---|---|---|
GS算法 | 0.1787 | 0.1709 | 0.2703 | 0.6191 | 0.9505 |
SAD算法 | 0.1920 | 0.1855 | 0.2987 | 0.5967 | 0.8377 |
SED算法 | 0.1255 | 0.1273 | 0.2970 | 0.5826 | 0.7203 |
SED-GS算法 | 0.1856 | 0.1545 | 0.3078 | 0.6051 | 0.8836 |
SED-SAD算法 | 0.2023 | 0.1818 | 0.2998 | 0.6337 | 1.2311 |
SUDF算法 | 0.1687 | 0.5451 | 0.5472 | 0.8685 | 1.9627 |
U2Net†算法 | 0.1122 | 0.6525 | 0.6599 | 0.8569 | 1.5000 |
本文算法 | 0.1380 | 0.6482 | 0.6508 | 0.8703 | 1.3611 |
算法 | MAE | Favg | Fmax | AUC | NSS |
---|---|---|---|---|---|
GS算法 | 0.2169 | 0.1815 | 0.2214 | 0.8252 | 2.2154 |
SAD算法 | 0.2345 | 0.1397 | 0.2662 | 0.7707 | 1.1767 |
SED算法 | 0.1823 | 0.1541 | 0.3420 | 0.7691 | 1.3498 |
SED-GS算法 | 0.1856 | 0.1708 | 0.3634 | 0.8021 | 1.5908 |
SED-SAD算法 | 0.1833 | 0.1397 | 0.2662 | 0.8108 | 1.5301 |
SUDF算法 | 0.1345 | 0.4668 | 0.5654 | 0.8602 | 2.1200 |
U2Net†算法 | 0.1065 | 0.6144 | 0.6214 | 0.9281 | 2.3993 |
本文算法 | 0.0868 | 0.7528 | 0.7583 | 0.9793 | 2.7856 |
表3 HS-SOD实验结果
Table 3 Test results on HS-SOD
算法 | MAE | Favg | Fmax | AUC | NSS |
---|---|---|---|---|---|
GS算法 | 0.2169 | 0.1815 | 0.2214 | 0.8252 | 2.2154 |
SAD算法 | 0.2345 | 0.1397 | 0.2662 | 0.7707 | 1.1767 |
SED算法 | 0.1823 | 0.1541 | 0.3420 | 0.7691 | 1.3498 |
SED-GS算法 | 0.1856 | 0.1708 | 0.3634 | 0.8021 | 1.5908 |
SED-SAD算法 | 0.1833 | 0.1397 | 0.2662 | 0.8108 | 1.5301 |
SUDF算法 | 0.1345 | 0.4668 | 0.5654 | 0.8602 | 2.1200 |
U2Net†算法 | 0.1065 | 0.6144 | 0.6214 | 0.9281 | 2.3993 |
本文算法 | 0.0868 | 0.7528 | 0.7583 | 0.9793 | 2.7856 |
算法 | MAE | Favg | Fmax | AUC | NSS |
---|---|---|---|---|---|
BL算法 | 0.2170 | 0.6871 | 0.6914 | 0.8846 | 1.3545 |
MS算法 | 0.1927 | 0.6722 | 0.6941 | 0.9036 | 1.4209 |
LPS算法 | 0.1858 | 0.6932 | 0.7055 | 0.8806 | 1.2993 |
GMR算法 | 0.1889 | 0.6953 | 0.7101 | 0.8891 | 1.3939 |
RBD算法 | 0.1732 | 0.6795 | 0.6904 | 0.8939 | 1.3781 |
MBD算法 | 0.1718 | 0.6578 | 0.6693 | 0.9164 | 1.4387 |
MST算法 | 0.1579 | 0.6978 | 0.7111 | 0.8872 | 1.3678 |
LFCS算法 | 0.1477 | 0.7017 | 0.7231 | 0.9148 | 1.4260 |
本文算法 | 0.1046 | 0.8166 | 0.8214 | 0.9485 | 1.6645 |
表6 ECSSD实验结果
Table 6 Test results on ECSSD
算法 | MAE | Favg | Fmax | AUC | NSS |
---|---|---|---|---|---|
BL算法 | 0.2170 | 0.6871 | 0.6914 | 0.8846 | 1.3545 |
MS算法 | 0.1927 | 0.6722 | 0.6941 | 0.9036 | 1.4209 |
LPS算法 | 0.1858 | 0.6932 | 0.7055 | 0.8806 | 1.2993 |
GMR算法 | 0.1889 | 0.6953 | 0.7101 | 0.8891 | 1.3939 |
RBD算法 | 0.1732 | 0.6795 | 0.6904 | 0.8939 | 1.3781 |
MBD算法 | 0.1718 | 0.6578 | 0.6693 | 0.9164 | 1.4387 |
MST算法 | 0.1579 | 0.6978 | 0.7111 | 0.8872 | 1.3678 |
LFCS算法 | 0.1477 | 0.7017 | 0.7231 | 0.9148 | 1.4260 |
本文算法 | 0.1046 | 0.8166 | 0.8214 | 0.9485 | 1.6645 |
预训练 | 全局权重 | 超像素聚类 | 孪生结构 | Fmax | AUC |
---|---|---|---|---|---|
P | 0.5271 | 0.7610 | |||
P | P | P | 0.5250 | 0.8230 | |
P | P | P | 0.6124 | 0.8559 | |
P | P | 0.6117 | 0.8753 | ||
P | P | P | P | 0.6508 | 0.8703 |
表8 各部分在HSOD-C上的性能评估
Table 8 Effects of each component on HSOD-C
预训练 | 全局权重 | 超像素聚类 | 孪生结构 | Fmax | AUC |
---|---|---|---|---|---|
P | 0.5271 | 0.7610 | |||
P | P | P | 0.5250 | 0.8230 | |
P | P | P | 0.6124 | 0.8559 | |
P | P | 0.6117 | 0.8753 | ||
P | P | P | P | 0.6508 | 0.8703 |
Loss | MAE | Favg | Fmax |
---|---|---|---|
LBCE | 0.1185 | 0.7971 | 0.8171 |
LSSIM | 0.1187 | 0.7991 | 0.8057 |
LIOU | 0.1101 | 0.7863 | 0.8136 |
LBS | 0.1132 | 0.8060 | 0.8198 |
LBI | 0.1074 | 0.8041 | 0.8197 |
LFUS | 0.1046 | 0.8166 | 0.8214 |
表9 不同损失函数的约束效果
Table 9 Constraint effects of different loss functions
Loss | MAE | Favg | Fmax |
---|---|---|---|
LBCE | 0.1185 | 0.7971 | 0.8171 |
LSSIM | 0.1187 | 0.7991 | 0.8057 |
LIOU | 0.1101 | 0.7863 | 0.8136 |
LBS | 0.1132 | 0.8060 | 0.8198 |
LBI | 0.1074 | 0.8041 | 0.8197 |
LFUS | 0.1046 | 0.8166 | 0.8214 |
[1] |
doi: 10.1109/TPAMI.2016.2612187 pmid: 28113741 |
[2] |
doi: 10.1109/TMM.2012.2197741 URL |
[3] |
|
[4] |
|
[5] |
王成龙, 赵倩, 赵琰. 基于深度可分离卷积的实时遥感目标检测算法[J]. 电光与控制, 2022, 29(8): 45-49.
|
|
|
[6] |
马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 210363.
|
|
|
[7] |
于博文, 吕明. 改进的YOLOv3算法及其在军事目标检测中的应用[J]. 兵工学报, 2022, 43(2): 345-354.
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
|
[8] |
|
[9] |
|
[10] |
doi: 10.1016/j.neucom.2018.02.070 URL |
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
doi: 10.1016/j.adhoc.2020.102369 URL |
[16] |
doi: 10.1109/TIP.2021.3074796 URL |
[17] |
doi: 10.1109/TCYB.2018.2793278 pmid: 29993850 |
[18] |
doi: 10.1109/TIP.2020.3042084 pmid: 33306467 |
[19] |
|
[20] |
doi: 10.1016/j.patcog.2020.107404 URL |
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
doi: 10.1109/LSP.2014.2323407 URL |
[27] |
doi: 10.1109/TIP.2015.2440174 pmid: 26054065 |
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
doi: 10.1109/TCYB.2018.2793278 pmid: 29993850 |
[1] | 田大明, 苗圃. 融合模型求解与深度学习的可见光通信非线性均衡器[J]. 兵工学报, 2024, 45(2): 466-473. |
[2] | 张堃, 杜睿怡, 时昊天, 华帅. 基于Mogrifier-BiGRU的飞行器轨迹预测[J]. 兵工学报, 2024, 45(2): 373-384. |
[3] | 杨家铭, 潘悦, 王强, 曹怀刚, 高荪培. 水下弱目标跟踪的深度学习方法研究[J]. 兵工学报, 2024, 45(2): 385-394. |
[4] | 彭沛然, 任术波, 李佳男, 周鸿伟, 许廷发. 基于光照感知的多光谱融合行人检测方法[J]. 兵工学报, 2023, 44(9): 2622-2630. |
[5] | 周宇, 曹荣刚, 栗苹, 马啸. 一种用于外场试验图像的引信炸点检测方法[J]. 兵工学报, 2023, 44(8): 2453-2464. |
[6] | 王洋, 冯永新, 宋碧雪, 田秉禾. DP-DRCnet卷积神经网络信号调制识别算法[J]. 兵工学报, 2023, 44(2): 545-555. |
[7] | 张良安, 陈洋, 谢胜龙, 刘同鑫. 基于机器视觉与深度学习的飞机防护栅裂纹检测系统[J]. 兵工学报, 2023, 44(2): 507-516. |
[8] | 王强, 吴乐天, 李红, 王勇, 王欢, 杨万扣. 基于双支网络协作的红外弱小目标检测[J]. 兵工学报, 2023, 44(10): 3165-3176. |
[9] | 郑志伟, 管雪元, 傅健, 马训穷, 尹上. 基于卷积神经网络与长短期记忆神经网络的弹丸轨迹预测[J]. 兵工学报, 2023, 44(10): 2975-2983. |
[10] | 王亮, 陈建华, 李烨. 一种基于深度学习的无人艇海上目标识别技术[J]. 兵工学报, 2022, 43(S2): 13-19. |
[11] | 王晓琦, 赵旸, 张键, 王硕. 基于深度学习的船体三维模型自动生成方法[J]. 兵工学报, 2022, 43(S2): 115-119. |
[12] | 李良福, 陈卫东, 高强, 许开銮, 刘轩, 何曦, 钱钧. 基于深度学习的光电系统智能目标识别[J]. 兵工学报, 2022, 43(S1): 162-168. |
[13] | 李锦青, 刘泽飞, 满振龙. 基于生成对抗网络的密钥生成方法及其在微光图像加密中的应用[J]. 兵工学报, 2022, 43(2): 337-344. |
[14] | 杨传栋, 钱立志, 薛松, 陈栋, 凌冲. 图像自寻的弹药目标检测方法综述[J]. 兵工学报, 2022, 43(10): 2687-2704. |
[15] | 普运伟, 刘涛涛, 郭江, 吴海潇. 基于卷积神经网络和模糊函数主脊坐标变换的雷达辐射源信号识别[J]. 兵工学报, 2021, 42(8): 1680-1689. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||