欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (9): 2639-2649.doi: 10.12382/bgxb.2022.1162

所属专题: 智能系统与装备技术

• • 上一篇    下一篇

基于超像素注意力和孪生结构的半监督高光谱显著性目标检测

秦昊林1, 许廷发1,2,3, 李佳男1,3,*()   

  1. 1 北京理工大学 光电学院, 北京 100081
    2 北京理工大学重庆创新中心, 重庆 401120
    3 北京理工大学 光电成像技术与系统教育部重点实验室, 北京 100081
  • 收稿日期:2022-11-30 上线日期:2023-02-28
  • 通讯作者:
  • 基金资助:
    国家自然科学基金青年基金项目(202020429036)

Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure

QIN Haolin1, XU Tingfa1,2,3, LI Jianan1,3,*()   

  1. 1 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
    2 Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
    3 Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of China, Beijing Institute of Technology, Beijing 100081, China
  • Received:2022-11-30 Online:2023-02-28

摘要:

高光谱显著性目标检测技术在伪装识别、异常检测等领域展现了惊人的潜力,并得到了广泛的关注。基于深度学习技术的神经网络模型克服了传统算法检测精度低、鲁棒性弱的缺点,但是数据标注成本限制了其进一步发展。为此提出了一种超像素注意力孪生半监督算法,使用少量全监督数据和大量弱监督数据进行训练,有效降低了标注成本。该算法由孪生预测模块和注意力辅助模块组成,其中孪生预测模块捕获弱标签隐式约束并生成显著性结果图,注意力辅助模块利用超像素级通道注意力机制优化预测结果。新提出的超像素注意力孪生半监督算法在高光谱数据集上实现了87%的检测精度,优于其他流行算法,在有效降低标注成本的同时具有优异的显著性检测性能。

关键词: 高光谱显著性目标检测, 半监督训练, 孪生结构, 超像素注意力机制, 深度学习

Abstract:

Hyperspectral salient object detection technology plays a key role in various fields, such as camouflage recognition and anomaly detection, thus having received extensive attention. The neural network model based on deep learning technology has improved issues such as low detection accuracy and weak robustness of traditional algorithms, but the cost of data labeling limits its further development. To this end, a superpixel attention siamese semi-supervised algorithm is proposed, which uses a small amount of fully supervised data and a large amount of weakly supervised data for training, effectively reducing annotation costs. The algorithm consists of a siamese prediction module and an attention assistance module. The siamese prediction module captures the implicit constraints of weak labels and generates a saliency result map, while the attention assistance module optimizes the prediction results with a superpixel-level channel attention mechanism. The newly proposed semi-supervised algorithm achieves a detection accuracy of 87% on hyperspectral datasets, outperforming other popular algorithms and demonstrating excellent saliency detection performance while effectively reducing annotation costs.

Key words: hyperspectral salient object detection, semi-supervised training, siamese structure, superpixel attention mechanism, deep learning

中图分类号: