欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (2): 507-516.doi: 10.12382/bgxb.2021.0674

• • 上一篇    下一篇

基于机器视觉与深度学习的飞机防护栅裂纹检测系统

张良安1, 陈洋1, 谢胜龙2,3,*(), 刘同鑫1   

  1. 1 安徽工业大学 机械工程学院, 安徽 马鞍山 243000
    2 安徽省工业互联网智能应用与安全工程实验室, 安徽 马鞍山 243023
    3 中国计量大学 机电工程学院, 浙江 杭州 310018
  • 收稿日期:2021-10-13 上线日期:2022-06-10
  • 通讯作者:
  • 基金资助:
    湖州市科技计划项目(2021GN03); 国家自然科学基金项目(52205037); 政府间国际科技创新合作重点专项项目(2017YFE0113200); 安徽省工业互联网智能应用与安全工程实验室开放基金项目(IASII21-04)

Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning

ZHANG Liang'an1, CHEN Yang1, XIE Shenglong2,3,*(), LIU Tongxin1   

  1. 1 School of Mechanical Engineering, Anhui University of Technology, Maanshan 243000, Anhui, China
    2 School of Mechanical and Electrical Engineering, Maanshan 243023, Anhui, China
    3 College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • Received:2021-10-13 Online:2022-06-10

摘要:

针对传统飞机防护栅裂纹检测中存在的效率低、可靠性差等问题,基于机器视觉技术设计一种飞机防护栅裂纹检测装置,并结合图像处理技术与深度学习原理提出一种飞机防护栅裂纹检测算法。设计飞机防护栅裂纹检测系统,研究防护栅裂纹图像识别算法。采集并整理飞机防护栅裂缝图像,研究并制作飞机防护栅裂纹检测数据集;分别以ZF-Net、VGG-16和ResNet-101卷积神经网络作为Faster-RCNN特征提取网络,开展飞机防护栅表面裂纹和缺陷裂纹检测研究。实验结果表明:3种模型均达到了良好的检测精度,其检测精度分别为92.79%、95.12%和97.54%,其中ResNet-101网络检测效果最好,相比于现有的防护栅裂纹机器视觉检测方法,漏检率和虚警率分别下降了22.54%和89.28%,检出率提高了22.54%;ResNet-101网络在不同光照条件下仍有较高的检测精度,检测装置和检测算法有效,可为飞机防护栅的检测提供了新方法。

关键词: 飞机防护栅, 裂纹检测, 机器视觉, 深度学习, 卷积神经网络

Abstract:

To address the problems of low efficiency and poor reliability in the crack detection of traditional aircraft protective grill, a crack detection device is designed based on machine vision technology. Combined with image processing technology and deep learning principles, a crack detection and calculation method for aircraft protective grill is proposed. Firstly, a detection system is designed, and the image recognition algorithm of protective grill is studied, and then, the crack images of aircraft protective grill are collected and sorted, and the crack detection data set is studied and made. Secondly, the ZF-Net, VGG-16 and ResNet-101 convolutional neural networks are used as the feature extraction networks of Faster-RCNN to detect surface cracks and defect cracks of the aircraft protective grill. The experimental results show that: the three models can achieve good detection accuracy, which are 92.79%,95.12% and 97.54% respectively; the Resnet-101 network has the best detection effect; compared with the existing machine vision detection method for protective grill cracks, the missed detection rate and false alarm rate are reduced by 22.54% and 89.28% respectively, and the detection rate is improved by 22.54%. Further research shows that the ResNet-101 network still has high detection accuracy under different lighting conditions, which shows the effectiveness of the detection device and detection algorithm. This research provides a new method for crack detection of the aircraft protective grill.

Key words: aircraft protective grid, crack detection, machine vision, deep learning, convolutional neural network

中图分类号: