欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (10): 2964-2974.doi: 10.12382/bgxb.2022.0767

• • 上一篇    下一篇

基于迁移学习的供药装置故障诊断方法

黄文宽1, 钱林方1,2,*(), 尹强1, 刘太素3   

  1. 1 南京理工大学 机械工程学院, 江苏 南京 210094
    2 西北机电工程研究所, 陕西 咸阳 712099
    3 南京工程学院, 江苏 南京 211167
  • 收稿日期:2022-08-31 上线日期:2023-10-30
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(U2141246)

Fault Diagnosis Method of Modular Charge Feeding Mechanism Based on Transfer Learning

HUANG Wenkuan1, QIAN Linfang1,2,*(), YIN Qiang1, LIU Taisu3   

  1. 1 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2 Northwest Institute of Mechanical and Electrical Engineering, Xianyang 712099, Shaanxi, China
    3 Nanjing Institute of Technology, Nanjing 211167, Jiangsu, China
  • Received:2022-08-31 Online:2023-10-30

摘要:

针对多工况下的模块发射药供药装置故障诊断问题,提出一种基于迁移学习和奇异值分解的故障诊断方法。通过奇异值分解对模块药的位移速度数据进行降维和降噪预处理,并提取特征;采用基于TrAdaBoost算法框架的迁移学习方法,综合有限的试验数据和大量的仿真数据,提取有效故障信息,构建多个基故障分类器,并最终集成一个高质量故障分类器。研究结果表明,该方法对多样工况下的故障数据有很好的适应性,在试验数据量较少的情况下,相对于传统机器学习方法可以获得更好的故障识别准确率。

关键词: 供药装置, 迁移学习, 奇异值分解, 故障诊断

Abstract:

To solve the problem of fault diagnosis of the modular charge feeding mechanism under multiple working conditions, a fault diagnosis method based on transfer learning and singular value decomposition (SVD) was proposed. SVD was used for dimensionality reduction and noise reduction as means of preprocessing of the modular charge velocity data and for feature extraction. The transfer learning method based on the TrAdaBoost algorithm framework was adopted to synthesize limited test data and a large amount of simulation data to extract effective fault information. In the information, multiple base fault classifiers were built and integrated into a high-quality fault classifier. The experimental results showed that the proposed method has good adaptability to the fault data under multiple working conditions, which can obtain better diagnosis accuracy compared to the traditional machine learning strategy in the case of limited test data.

Key words: modular charge feeding mechanism, transfer learning, singular value decomposition, fault diagnosis

中图分类号: