| 
 [1]  Reichardt  H.The laws of cavitation bubbles as axially symmetrical bodies in a flow[R]. UK: Ministry of Aircraft Production, 1946:322-326.
 [2]  Ceccio S L. Friction drag reduction of external flows with bubble and gas injection[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 183-203.
 [3]  Lee Q T, Xue L P, He Y  S. Experimental study of ventilated supercavities with a dynamic pitching model[J]. Journal of Hydrodynamics, 2008, 20(4): 456-460.
 [4]  Pan Z  C, Lu C J, Chen Y, et al. Numerical study of periodically forced-pitching of a supercavitating vehicle[J]. Journal of Hydrodynamics, 2010,22(5): 899-904.
 [5]  Yu K P, Zhang G, Zhou J J, et al. Numerical study of the pitching motions of supercavitating vehicles[J]. Journal of Hydrodynamics, 2012, 24(6): 951-958.
 [6]  Kopriva J, Arndt R E A, Amromin E L. Improvement of hydrofoil performance by partial ventilated cavitation in steady flow and periodic gusts[J]. Journal of Fluids Engineering, 2008, 130(3): 031301.
 [7]  Arndt  R E A, Hambleton W T, Kawakami E, et al. Creation and maintenance of cavities under horizontal surfaces in steady and gust flows[J]. Journal of Fluids Engineering, 2009, 131(11): 111301.
 [8]  Lee S J, Kawakami E, Arndt R E A. Investigation of the behavior of ventilated supercavities in a periodic gust flow[J]. Journal of Fluids Engineering, 2013, 38(2): 081301.
 [9]  Lee S J, Kawakami E, Karn A, et al. A comparative study of behaviors of ventilated supercavities between experimental models with different mounting configurations[J]. Fluid Dynamics Research, 2016, 48(4): 045506.
 
 [10]  Sanabria  D E, Balas G, Arndt R E A. Modeling, control, and experimental validation of a high-speed supercavitating vehicle[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 362-373.
 [11]  Karn A, Arndt R E A, Hong J. An experimental investigation into supercavity closure mechanisms[J]. Journal of Fluid Mecha- nics,  2016, 789(3): 259-284.
 [12]  Karn A, Arndt R E A, Hong J. Dependence of supercavity closure upon flow unsteadiness[J]. Experimental Thermal and Fluid Science, 2015, 68:493-498.
 [13]  Karn A, Arndt R E A, Hong J. Gas entrainment behaviors in the formation and collapse of a ventilated supercavity[J]. Experimental Thermal and Fluid Science, 2016, 79:294-300.
 [14]  Yu K P, Zhou J J, Min J X, et al. A contribution to study on the lift of ventilated supercavitating vehicle with low Froude number[J]. Journal of Fluids Engineering, 2010, 132(11): 111303.
 [15]  周景军. 通气超空泡流动及航行体流体动力数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 70-74.
 ZHOU Jing-jun. Numerical simulation study on the ventilated supercavitating flow and hydrodynamics of vehicle[D]. Harbin: Harbin Institute of Technology, 2011: 70-74.(in Chinese)
 [16]  胡世良, 鲁传敬, 潘展程. 通气空泡重力效应研究[J].水动力学研究与进展, 2009, 24(6): 786-792.
 HU Shi-liang, LU Chuan-jing, PAN Zhan-cheng. Research on the gravity effect of ventilated cavitating flows[J]. Chinese Journal of Hydrodynamics, 2009, 24(6): 786-792.(in Chinese)
 [17]  路中磊, 魏英杰, 王聪, 等. 开放空腔壳体入水扰动流场结构及空泡失稳特征[J]. 物理学报, 2017, 66(6):167-181.
 LU Zhong-lei, WEI Ying-jie, WANG Cong, et al. Experimental and numerical investigation on the flow structure and instability of water-entry cavity by a semi-closed cylinder[J]. Acta Physica Sinica, 2017, 66(6): 167-181.(in Chinese)
 [18]  陈鑫. 通气空泡流研究[D]. 上海: 上海交通大学, 2006: 56-59.
 CHEN Xin. An investigation of the ventilated cavitating flow[D]. Shanghai: Shanghai Jiao Tong University, 2006: 56-59.(in Chinese)
 [19]  潘展程. 通气超空泡流动结构与稳定性研究[D]. 上海: 上海交通大学, 2013: 13-21.
 PAN Zhan-cheng. Study on the stability and flow structure of ventilated supercavitating flow[D]. Shanghai: Shanghai Jiao Tong University, 2013: 13-21.(in Chinese)
 [20]  Nesteruk I. Shape of slender axisymmetric ventilated supercavities[J]. Journal of Computational Engineering, 2014, 501590: 1-18.
 
 
 
 
 第39卷
 第9期2018  年9月兵工学报ACTA
 ARMAMENTARIIVol.39No.9Sep.2018
 
 
 |