欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (12): 3580-3589.doi: 10.12382/bgxb.2023.0645

所属专题: 爆炸冲击与先进防护

• • 上一篇    下一篇

爆炸冲击波作用下聚氨酯-半球夹芯结构的动态响应

潘腾1, 卞晓兵1, 袁名正1, 王亮亮2, 黄元2, 黄广炎1,3, 张宏1,3,*()   

  1. 1 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081
    2 北京理工艾尔安全科技有限公司, 北京 100081
    3 北京理工大学重庆创新中心 现代兵器技术实验室, 重庆 401120
  • 收稿日期:2023-07-12 上线日期:2023-12-30
  • 通讯作者:
  • 基金资助:
    国家自然科学基金青年项目(12002051); 重庆市自然基金面上项目(cstc2021jcyj-msxmX0666)

Dynamic Response of Polyurethane-hemisphere Sandwich Structure under Action of Explosive Shock Wave

PAN Teng1, BIAN Xiaobing1, YUAN Mingzheng1, WANG Liangliang2, HUANG Yuan2, HUANG Guangyan1,3, ZHANG Hong1,3,*()   

  1. 1 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    2 Air Defense Technology Co., Ltd., Beijing Institute of Technology, Beijing 100089, China
    3 Modern Ordnance Technology Laboratory, Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
  • Received:2023-07-12 Online:2023-12-30

摘要:

提高防爆装备的抗爆性能已经成为热门的研究课题,目前的防爆装备主要采用金属制成,一般重量大,采用点阵夹芯结构可以实现轻量化。点阵夹芯结构具有良好的能量吸收效率和在高应变率下的优异力学性能,但以往的防爆研究未考虑过不易变形的半球型点阵,复合了聚氨酯泡沫的抗爆夹芯结构研究更为少见。鉴于此,结合聚氨酯泡沫缓冲吸能以及半球结构的拱形抗变形能力提出一种新型的聚氨酯-半球夹芯结构,并且采用实验和数值模拟相结合的方法对聚氨酯-半球夹芯结构在爆炸冲击波载荷下的动态响应进行研究。研究结果表明,在500g TNT当量0.65m爆炸冲击下,相近面密度的聚氨酯-半球夹芯结构中心点位移最小,相较于铝板和纯半球夹芯板分别减小了30%和35%,纯半球夹芯板虽然吸能最多但是变形最大,聚氨酯-半球夹芯结构和铝板的吸能分别为纯半球夹芯板的85%和63%,相较于铝板,聚氨酯-半球夹芯结构在保证能量吸收效率的同时能有效减少靶板速度和应力集中。

关键词: 聚氨酯, 夹芯结构, 爆炸冲击波, 半球结构, 数值模拟

Abstract:

Improvement of blast resistance of explosion-proof equipment has become a popular research topic. The current explosion-proof equipment is mainly made of metal, generally having considerable weight, the use of lattice sandwich structure can achieve lightweight. Lattice sandwich structure has good energy absorption efficiency and excellent mechanical properties at high strain rates, but the non-deformable hemispherical lattice has not been considered in the previous explosion protection research, and the research on composite polyurethane foam explosion-resistant sandwich structure is even more rare. In view of this, a new type of polyurethane-hemispherical sandwich structure is proposed in considering the energy absorption of polyurethane foam and the arch deformation resistance of hemispherical structure, and a combination of experiment and numerical simulation is used to study the dynamic response of polyurethane-hemispherical sandwich structure under the blast shockwave loading. The results show that the center point displacement of polyurethane-hemisphere sandwich structure with the approximate surface density is the smallest under 0.65m blast impact of 500g TNT, which is 30% and 35% smaller than that of aluminum plate and pure hemisphere sandwich plate, respectively. The pure hemisphere sandwich plate absorbs the most energy but has the largest deformation, and the energy absorption of polyurethane-hemisphere sandwich structure and aluminum plate is 85% and 63% of that of the pure hemisphere sandwich plate, respectively, which shows that the incorporation of polyurethane has a significant role in ensuring the energy absorption. It can be seen that, compared with the aluminum plate, the polyurethane-hemispheres sandwich structure can effectively reduce the speed and stress concentration of the target plate while ensuring the energy absorption efficiency.

Key words: polyurethane, sandwich structure, explosion shock wave, hemispheric structure, numerical simulation

中图分类号: