[1] |
TARVER C M, TRAN T D. Thermal decomposition models for HMX-based plastic bonded explosives[J]. Combustion and Flame, 2004, 137(1/2): 50-62.
doi: 10.1016/j.combustflame.2004.01.002
URL
|
[2] |
PAKULAK Jr J M, CRAGIN S E. Super small-scale cookoff bomb[R]. Washington, D.C., US: Department of the Navy Washington D.C., 1986.
|
[3] |
JONES D A, PARKER R P. Heat flow calculations for the small-scale cook-off bomb test[R]. AD-A236829.US:DTIC, 1991.
|
[4] |
JONES D A, PARKER R P. Simulation of cook off results in a small scale test[R]. Defence Science and Technology Organization Canberra(Australia), 1994.
|
[5] |
DICKSON P M, ASAY B W, HENSON B F, et al. Measurement of phase change and thermal decomposition kinetics during cook off of PBX 9501[C]// Proceedings of AIP Conference Proceedings. AIP, 2000, 505(1): 837-840.
|
[6] |
AYDEMIR E, ULAS A. A numerical study on the thermal initiation of a confined explosive in 2-D geometry[J]. Journal of Hazardous Materials, 2011, 186(1): 396-400.
doi: 10.1016/j.jhazmat.2010.11.015
pmid: 21130568
|
[7] |
CHEN L, MA X, LU F, et al. Investigation of the cook-off processes of HMX-based mixed explosives[J]. Central European Journal of Energetic Materials, 2014, 11(2):199-218.
|
[8] |
PERRY W L, ZUCKER J, DICKSON P M, et al. Interplay of explosive thermal reaction dynamics and structuralconfinement[J]. Journal of Applied Physics, 2007, 101(7):074901-1-074901-5.
doi: 10.1063/1.2713090
URL
|
[9] |
PERRY W L, DICKSON P M, PARKER G R, et al. Quantification of reaction violence and combustion enthalpy of plastic bonded explosive 9501 under strong confinement[J]. Journal of Applied Physics, 2005, 97(2):023528.
doi: 10.1063/1.1828220
URL
|
[10] |
RAE P J, BAUER C L, STENNETT C. Small scale thermal violence experiments for combined insensitive highexplosive and boostermaterials[EB/OL]. http://www.osti.gov/scitech/biblio/1000930.2010.
|
[11] |
SORBER S, STENNET C, GOLDSMITH M. Developments in a small scale test of violence[C]// Proceedings of American Institute of Physics Conference Series. New York,NY, US: American Institute of Physics, 2012, 1426(1): 563-566.
|
[12] |
CHIDESTER S K, TARVER C M, GREEN L G, et al. On the violence of thermal explosion in solid explosives[J]. Combustion & Flame, 1997, 110(1/2):264-280.
|
[13] |
GARCIA F, FORBES J W, TARVER C M, et al. Pressure wave measurements from thermal cook-off of an hmx based high explosive pbx 9501[C]// Proceedings of AIP Conference Proceedings. New York,NY, US: American Institute of Physics, 2002, 620(1): 882-885.
|
[14] |
FORBES J W, GARCIA F, TARVER C M, et al. Pressure wave measurements during thermal explosion of HMX-based high explosives[R]. Livermore,CA, US: Lawrence Livermore National, 2002.
|
[15] |
GARCIA F, VANDERSALL K S, FORBES J W, et al. Thermal cook-off experiments of the hmx based high explosive lx-04 to characterize violence with varying confinement[C]// Proceedings of AIP Conference Proceedings. New York,NY, US: American Institute of Physics, 2006, 845(1): 1061-1064.
|
[16] |
MAIENSCHEIN J L, WARDELL J F. Deflagration behavior of pbxn-109 and composition b at high pressures and temperatures[R]. Livermore,CA, US: Lawrence Livermore National Lab., 2002.
|
[17] |
MAIENSCHEIN J L, WARDELL J F, DeHaven M R, et al. Deflagration of HMX-based explosives at high temperatures and pressures[J]. Propellants, Explosives,Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 2004, 29(5): 287-295.
|
[18] |
寇永锋, 陈朗, 马欣, 等. 黑索今基含铝炸药烤燃实验和数值模拟[J]. 兵工学报, 2019, 40(5): 979-989.
|
|
KOU Y F, CHEN L, MA X, et al. Cook-off experimental an numerical simulation of rdx-based aluminized explosives[J]. Acta Armamentarii, 2019, 40(5): 979-989. (in Chinese)
|
[19] |
HALLQUIST J O. LS-DYNA keyword user's manual livermore[M]. Livermore, CA, US: Livermore Software Technology Corporation, 2007.
|