欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2012, Vol. 33 ›› Issue (11): 1329-1334.doi: 10.3969/j.issn.1000-1093.2012.11.009

• 论文 • 上一篇    下一篇

旋转视频中特征点的迭代筛选与光流估计匹配研究

王斌锐, 徐崟, 金英连, 吴善强   

  1. (中国计量学院 机电工程学院, 浙江 杭州 310018)
  • 收稿日期:2011-03-31 修回日期:2011-03-31 上线日期:2014-01-10
  • 作者简介:王斌锐(1978—),男,副教授
  • 基金资助:
    国家自然科学基金项目(50905170); 浙江省自然科学基金项目(Y1090042)

Iterative Filter and Optical Flow Estimation Matching of Feature Points in Rotary Jitter Compensation

WANG Bin-rui, XU Yin, JIN Ying-lian, WU Shan-qiang   

  1. (College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018,Zhejiang, China)
  • Received:2011-03-31 Revised:2011-03-31 Online:2014-01-10

摘要: 转动抖动补偿是视频稳像的难点,针对转动抖动补偿中的关键技术特征点的筛选与匹配展开研究。建立了图像的6参数仿射模型;推导得到估计有意运动参数的超定方程;采用最小二乘迭代算法来去除绝对误差和(SAD) 算法误判的特征点;采用金字塔(LK)光流算法来对旋转视频进行特征点匹配。编程实现算法;用特征窗口梯度矩阵法(KLT)提取特征后,分别用SAD算法和LK光流算法进行匹配,求解得到旋转变换阵参数误差,分析、比较并图示了误差原因;利用Kalman滤波去除无意运动;对含转动抖动的视频进行稳像补偿。在自主移动机器人平台上开展了实验。结果表明LK光流算法相比SAD算法对旋转视频的特征点匹配误差小,结合Kalman滤波可有效补偿转动抖动,将最大8.37°的转动抖动稳像到3.68°以下。

关键词: 信息处理技术, 特征点, 光流, 抖动补偿, 机器人

Abstract: Rotary jitter compensation is a difficulty in video image stabilization. The feature point matching and inaccurate point filtering were studied. An affine model with 6 parameters was established for moving images, and an over-determined equation to estimate motion parameters was derived. The least squares iterative algorithm was used to remove error feature points judged by sum of absolute difference (SAD) matching algorithm. A pyramid-style Lucas-Kanade (LK) algorithm based on optical flow was adopted for feature point matching of rotary video. All algorithms were programmed. After detecting feature points by using the gradient matrix of the feature window (KLT) method, SAD and LK algorithms were used to match feature points respectively, and the rotation matrix parameter errors were obtained and compared. The reasons of matching error were analyzed. Kalman filter was used to smooth rotation parameters. All algorithms were implemented on an autonomous robot. The experiment results show that LK can get less matching errors than SAD for rotation jitter, and Kalman filter makes the maximum 8.37° rotation jitter less than 3.68°, thus it can compensate the rotary video effectively.

Key words: information processing, feature point, optical flow, jitter compensation, robot

中图分类号: