[1] |
REYNOLDS C W. Flocks, herds and schools : a distributed behavior model[J]. ACM SIGGRAPH Computer Graphics, 1987, 87: 27-31
|
[2] |
COUZIN I D, KRAUSE J, JAMES R, et al. Collective memory and spatial sorting in animal groups[J]. Journal of Theoretical Biology, 2002, 218(1):1-11.
pmid: 12297066
|
[3] |
ULRICH Y, SARAGOSTI J, TOKITA C K, et al. Fitness benefits and emergent division of labour at the onset of group living[J]. Nature, 2018, 560(7720):635-638.
doi: 10.1038/s41586-018-0422-6
|
[4] |
CHEN H, DUAN H B. Multiple unmanned aerial vehicle autonomous formation via wolf packs mechanism[C]//Proceedings of IEEE International Conference on Aircraft Utility Systems.Washington,D.C.,US:IEEE, 2016.
|
[5] |
CASSIDY K A, MACNULTY D R, STAHLER D R, et al. Group composition effects on aggressive interpack interactions of gray wolves in Yellowstone National Park[J]. Behavioral Ecollgy, 2015, 26: 637-642.
|
[6] |
DUCATELLE F, DI CARO G A, PINCIROLI C, et al. Self-organized cooperation between robotic swarms[J]. Swarm Intelligence, 2011, 5(2):73-96.
doi: 10.1007/s11721-011-0053-0
URL
|
[7] |
|
|
WU W L, ZHOU X S, SHEN B, et al. A review of swarm robotic systems property evaluation research[J]. Acta Automatica Sinica, 2022, 48(5):1153-1172. DOI: 10.16383/j.aas.c200964. (in Chinese)
|
[8] |
RAIBERT M, BLANKESPOOR K, NELSON G, et al. BigDog, the rough-terrain quadruped robot[C]//Proceedings of the 17th World Congress.Seoul,Korea:IFAC, 2008, 41(2): 10822-10825.
|
[9] |
SEMINI C, TSAGARAKIS N G, GUGLIELMINO E, et al. Design of HyQ-a hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2011, 225(6): 831-849.
doi: 10.1177/0959651811402275
URL
|
[10] |
HUTTER M, GEHRING C, JUD D, et al. Anymal-a highly mobile and dynamic quadrupedal robot[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington,D.C., US: IEEE, 2016: 38-44.
|
[11] |
NAGAKUBO A, HIROSE S. Walking and running of the quadruped wall-climbing robot[C] //Proceedings of the 1994 IEEE International Conference on Robotics and Automation.Washington,D.C.,US:IEEE, 1994, 2:1005-1012.doi: 10.1109/Robot.1994.351225.
|
[12] |
柴汇, 孟健, 荣学文, 等. 高性能液压驱动四足机器人SCalf的设计与实现[J]. 机器人, 2014, 36(4):385-391.
|
|
CHAI H, MENG J, RONG X W, et al. Design and implementation of SCalf, an advanced hydraulic quadruped robot[J]. Robot, 2014, 36(4):385-391. (in Chinese)
|
[13] |
PAN Y, GAO F, QI C K, et al. Human-tracking strategies for a six-legged rescue robot based on distance and view[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 219-230.
doi: 10.3901/CJME.2015.1212.146
URL
|
[14] |
FOLKERTSMA G A, KIM S, STRAMIGIOLI S. Parallel stiffness in a bounding quadruped with flexible spine[C]//Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington,D.C., US: IEEE, 2012: 2210-2215.
|
[15] |
BARASUOL V, VILLARREAL-MAGAÑA O A, SANGIAH D, et al. Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth force control[J]. Frontiers in Robotics and AI, 2018, 5: 51.
doi: 10.3389/frobt.2018.00051
pmid: 33659276
|
[16] |
华子森. 面向四足机器人的被动柔顺液压伺服作动器设计, 分析与应用[D]. 济南: 山东大学, 2020.
|
|
HUA Z S. Design, analysis and application of passive compliant hydraulic servo actuator for quadruped robot[D]. Jinan: Shandong University, 2020. (in Chinese)
|
[17] |
WENSING P M, WANG A, SEOK S, et al. Proprioceptive actuator design in the mit cheetah:impact mitigation and high-bandwidth physical interaction for dynamic legged robots[J]. IEEE Transactions on Robotics, 2017, 33(3): 509-522.
doi: 10.1109/TRO.2016.2640183
URL
|
[18] |
BLEDT G, POWELL M J, KATZ B, et al. MIT Cheetah 3:Design and control of a robust, dynamic quadruped robot[C] //Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington,D.C., US: IEEE, 2018: 2245-2252.
|
[19] |
YANG C Y, YUAN K, ZHU Q G, et al. Multi-expert learning of adaptive legged locomotion[J]. Science Robotics, 2020, 5(49): eabb2174.
|
[20] |
LEE J, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science Robotics, 2020, 5(47):eabc5986.
doi: 10.1126/scirobotics.abc5986
URL
|
[21] |
MIKI T, LEE J, HWANGBO J, et al. Learning robust perceptive locomotion for quadrupedal robots in the wild[J]. Science Robotics, 2022, 7(62): eabk2822.
doi: 10.1126/scirobotics.abk2822
URL
|
[22] |
WEI H X, CAI Y P, LI H Y, et al. Sambot: a self-assembly modular robot for swarm robot[C]//Proceedings of IEEE International Conference on Robotics and Automation. Anchorage, AK, US:IEEE, 2010.
|
[23] |
DORIGO M, TUCI E, GROΒ R, et al. The swarm-bots project[C]//Proceedings of International Workshop on Swarm Robotics. Berlin, Heidelberg, Germany: Springer, 2004: 31-44.
|
[24] |
JDEED M, ZHEVZHYK S, STEINKELLNER F, et al. Spiderino-a low-cost robot for swarm research and educational purposes[C]//Proceedings of the 2017 13rd Workshop on Intelligent Solutions in Embedded Systems. Washington,D.C.,US:IEEE, 2017: 35-39.
|
[25] |
HOWARD A, PARKER L E, SUKHATME G S. Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection[J]. The International Journal of Robotics Research, 2006, 25(5/6): 431-447.
doi: 10.1177/0278364906065378
URL
|
[26] |
ZHU P X, REN W. Multi-Robot joint visual-inertial localization and 3-D moving object tracking[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington,D.C., US: IEEE, 2020:11573-11580.
|
[27] |
PAPAIOANNOU S, KOLIOS P, PANAYIOTOU C G, et al. Cooperative simultaneous tracking and jamming for disabling a rogue drone[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington,D.C., US: IEEE, 2020.
|
[28] |
SUNG Y, BUDHIRAJA A K, WILLIAMS R K, et al. Distributed simultaneous action and target assignment for Multi-Robot Multi-Target tracking[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington,D.C., US: IEEE, 2018.
|
[29] |
FRANCHI A, PETITTI A, RIZZO A. Distributed estimation of the inertial parameters of an unknown load via multi-robot manipulation[C]//Proceedings of IEEE Conference on Decision and Control. Washington,D.C., US: IEEE, 2014.
|
[30] |
HABIBI G, KINGSTON Z, XIE W, et al. Distributed centroid estimation and motion controllers for collective transport by multi-robot systems[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington,D.C., US: IEEE, 2015:1282-1288.
|
[31] |
BANFI J, LI A Q, BASILICO N, et al. Multirobot online construction of communication maps[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation. Washington,D.C., US: IEEE, 2017: 2577-2583.
|
[32] |
PALIOTTA C, BELLETER D J W, PETTERSEN K Y. Adaptive source seeking with leader-follower formation control[J]. IFAC-PapersOnLine, 2015, 48(16): 85-290.
|
[33] |
SHORINWA O, YU J, HALSTED T, et al. Distributed Multi-Target tracking for autonomous vehicle fleets[C] //Proceedings of IEEE International Conference on Robotics and Automation. Washington,D.C., US: IEEE, 2020:3495-3501.
|
[34] |
HINOSTROZA M A, XU H T, SOARES C G. Cooperative operation of autonomous surface vehicles for maintaining formation in complex marine environment[J]. Ocean Engineering, 2019, 183: 132-154.
doi: 10.1016/j.oceaneng.2019.04.098
URL
|
[35] |
XIAO X S, DUFEK J, WOODBURY T, et al. UAV assisted USV visual navigation for marine mass casualty incident response[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington,D.C., US: IEEE, 2017: 6105-6110.
|
[36] |
REYNOLDS C W. Flocks, herds and schools: a distributed behavioral model[C] //Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. 1987: 25-34. DOI: 10.1145/280811.281008.
|
[37] |
COUZIN I D, KRAUSE J, JAMES R, et al. Collective memory and spatial sorting in animal groups[J]. Journal of Theoretical Biol Ogy, 2002, 218(1): 1-11.
|
[38] |
VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6): 1226.
pmid: 10060237
|
[39] |
CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52(5):852-862.
doi: 10.1109/TAC.2007.895842
URL
|
[40] |
SPEARS W M, SPEARS D F, HAMANN J C, et al. Distributed, physics-based control of swarms of vehicles[J]. Autonomous Robots, 2004, 17(2):137-162.
doi: 10.1023/B:AURO.0000033970.96785.f2
URL
|
[41] |
SOYSAL O, SAHIN E. Probabilistic aggregation strategies in swarm robotic systems[C]//Proceedings 2005 IEEE Swarm Intelligence Symposium.Washington,D.C., US: IEEE, 2005: 325-332.
|
[42] |
THERAULAZ G, GOSS A. Task differentiation in polistes wasp colonies: a model for self-organizing groups of robots[J]. Proceedings Internatinal Confrens on Simulation of Adaptive Behavior, 1991:346-355. DOI: 10.7551/mitpress/3115.003.0047.
|
[43] |
SUNG Y, BUDHIRAJA A K, WILLIAMS R K, et al. Distributed simultaneous action and target assignment for multi-robot multi-target tracking[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Washington,D.C.,US:IEEE, 2018: 3724-3729.
|
[44] |
VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning[J]. Nature, 2019, 575(7782):350-354.
doi: 10.1038/s41586-019-1724-z
|
[45] |
WANG X J, SONG J X, QI P H, et al. SCC:an efficient deep reinforcement learning agent mastering the game of StarCraft II:arXiv: 2012.13169[R]. Ithaca,NY, US: Cornell University, 2020:2012.13169.
|
[46] |
LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative competitive environments, in: advances:arXiv:1706.02275[R]. Ithaca,NY, US: Cornell University, 2017:1706.02275.
|
[47] |
FOERSTER J N, FARQUHAR G, AFOURAS T, et al. Counterfactual multi-agent policy gradients[C]//Proceedings of the 32nd AAAI Conferenceon Artificial Intelligence. Reston, VA, US:AIAA, 2017.
|
[48] |
KIM D, MOON S, HOSTALLERO D, et al. Learning to schedule communication in multi-agent reinforcement learning:arXiv: 1902.01554[R]. Ithaca,NY, US: Cornell University, 2019:1902.01554.
|
[49] |
HOWARD A, PARKER LE, SUKHATME GS. Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection[J]. The International Journal of Robotics Research, 2006, 25(5/6):431-447. doi: 10.1177/0278364906065378.
|
[50] |
李超, 王瑞星, 黄建忠, 等. 稀疏奖励下基于强化学习的无人集群自主决策与智能协同[J]. 兵工学报, 2023, 44(6): 1537-1546.
doi: 10.12382/bgxb.2022.0177
|
|
LI C, WANG R X, HUANG J Z, et al. Autonomous decision-making and intelligent collaboration of UAV swarms based on reinforcement learning with sparse rewards[J]. Acta Armamentarii, 2023, 44(6):1537-1546. (in Chinese)
doi: 10.12382/bgxb.2022.0177
|
[51] |
孔国杰, 冯时, 于会龙, 等. 无人集群系统协同运动规划技术综述[J]. 兵工学报, 2023, 44(1):11-26.
doi: 10.12382/bgxb.2022.0930
|
|
KONG G J, FENG S, YU H L, et al. A review on cooperative motion planning of unmanned vehicles[J]. Acta Armamentarii, 2023, 44(1): 11-26. (in Chinese)
doi: 10.12382/bgxb.2022.0930
|
[52] |
HAUERT S, LEVEN S, VARGA M, et al. Reynolds flocking in reality with fixed-wing robots:communication range vs. maximum turning rate[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, US: IEEE, 2011:08855-1331.
|
[53] |
VÁSÁRHELYI G, VIRÁGH C, SOMORJAI G, et al. Optimized flocking of autonomous drones in confined environments[J]. Science Robotics, 2018, 3(20): eaat3536.
doi: 10.1126/scirobotics.aat3536
URL
|
[54] |
SORIA E, SCHIANO F, FLOREANO D. Predictive control of aerial swarms in cluttered environments[J]. Nature Machine Intelligence, 2021, 3(6):545-554.
doi: 10.1038/s42256-021-00341-y
|
[55] |
ZHOU X, WEN X Y, WANG Z P, et al. Swarm of micro flying robots in the wild[J]. Science Robotics, 2022, 7(66): eabm5954.
doi: 10.1126/scirobotics.abm5954
URL
|
[56] |
谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J]. 中国舰船研究, 2021, 16(1): 7-17, 31.
|
|
XIE W, TAO H, GONG J B, et al. Research advances in the development status and key technology of unmanned marine vehicle swarm operation[J]. Chinese Journal of Ship Research, 2021, 16(1): 7-17, 31. (in Chinese)
|
[57] |
李易珊. 云洲智能:无人系统领航深蓝探索[J]. 海洋与渔业, 2018(8): 68-69.
|
|
LI Y S. Yunzhou intelligence:unmanned system piloted deep blue exploration[J]. Ocean and Fishery, 2018(8): 68-69. (in Chinese)
|
[58] |
杨翊, 周星群, 胡志强, 等. 基于视觉定位的水下机器人无通信高精度编队技术研究[J]. 数字海洋与水下攻防, 2022(1): 50-58.
|
|
YANG Y, ZHOU X Q, HU Z Q, et al. Research on high-precision unmanned underwater vehicles team formation without communication based on visual positioning technology[J]. Digital Ocean & Underwater Warfare, 2022 (1): 50-58. (in Chinese)
|
[59] |
喻俊志, 周子烨, 刘金存. 多自主水下机器人系统研究进展与分析[J]. 信息与控制, 2021, 50(2): 129-140.
doi: 10.13976/j.cnki.xk.2021.0572
|
|
YU J Z, ZHOU Z Y, LIU J C. Research progress and analysis on multiple autonomous underwater vehicle systems[J]. Information and Control, 2021, 50(2): 129-140. (in Chinese)
doi: 10.13976/j.cnki.xk.2021.0572
|
[60] |
张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289-297.
|
|
ZHANG W, WANG N X, WEI S L, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289-297. (in Chinese)
|
[61] |
DORIGO M, THERAULAZ G, TRIANNI V. Swarm robotics: past, present, and future [Point of View][J]. Proceedings of the IEEE, 2021, 109(7): 1152-1165.
doi: 10.1109/JPROC.2021.3072740
URL
|
[62] |
张建东, 王鼎涵, 杨啟明, 等. 基于分层强化学习的无人机空战多维决策[J]. 兵工学报, 2023, 44(6): 1547-1563.
doi: 10.12382/bgxb.2022.0711
|
|
ZHANG J D, WANG D H, YANG Q M, et al. Multi-dimensional decision-Making for UAV air combat based on hierarchical reinforcement learning[J]. Acta Armamentarii, 2023, 44(6): 1547-1563. (in Chinese)
doi: 10.12382/bgxb.2022.0711
|