[1] 王美懿, 王浩. 超大口径平衡炮膛口流场数值仿真与流动特性分析[J]. 火炮发射与控制学报, 2017, 38(2):15-19. WANG M Y, WANG H. Numerical simulation and flow characteristics of muzzle flow field in ultra large caliber propelling gun[J]. Journal of Gun Launch & Control, 2017, 38(2):15-19. (in Chinese) [2] JIANG X H, FAN B C, LI H Z. Numerical investigations on dynamic process of muzzle flow[J]. Applied Mathematics & Mechanics, 2008, 29(3):351-360. [3] 黄欢, 何永, 蔺月敬. 某迫击炮炮口流场数值模拟与分析[J]. 火炮发射与控制学报, 2012, 33(4):63-67. HUANG H, HE Y, LIN Y J. Numerical simulation and analysis of mortar's muzzle flow field [J]. Journal of Gun Launch & Control, 2012, 33(4):63-67. (in Chinese) [4] 孙全兆, 范社卫, 王殿荣, 等. 某突击炮炮口流场数值模拟研究[J]. 弹道学报, 2019, 31(4):63-67,43. SUN Q Z, FAN S W, WANG D R, et al. Numerical study of muzzle flow field of assault gun [J]. Journal of Ballistics, 2019, 31(4):63-67,43. (in Chinese) [5] CLER D L,CHEVAUGEON N,SHEPHARD M S. CFD application to gun muzzle blast - a validation case study: AIAA 2013-1142[R]. Reno, NV, US: AIAA, 2003. [6] ZHUO C F, FENG F, WU X S, et al. Numerical simulation of the muzzle flows with base bleed projectile based on dynamic overlapped grids[J]. Computers & Fluids, 2014, 105:307-320. [7] KIM H J, KIM H J, KIM C A. Computations of homogeneous multiphase real fluid flows at all speeds[J]. AIAA Journal, 2018, 56(7):1-12. [8] 代淑兰,许厚谦,王兵.含高速运动弹丸的膛口二次燃烧并行数值模拟[J].弹道学报,2009,21(1):83-86. DAI S L, XU H Q, WANG B. Numerical simulation of secondary muzzle flash including high speed projectile using parallel computation method [J]. Journal of Ballistics, 2009,21(1):83-86. (in Chinese) [9] 代淑兰,许厚谦,肖忠良.带制退器的膛口燃烧流场并行数值模拟[J].弹道学报,2009, 21(4):84-87. DAI S L, XU H Q, XIAO Z L. Numerical simulation of muzzle combustion flow field with brake by parallel computation[J]. Journal of Ballistics, 2009, 21(4):84-87. (in Chinese) [10] SCHMIDT E M, SHEAR D. Optical measurements of muzzle blast[J]. AIAA Journal, 2012, 13(8):1086-1091. [11] SEO J H, MITTAL R. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries[J]. Journal of Computational Physics, 2011, 230(4):1000-1019. [12] GHIAS R, MITTAL R, DONG H. A sharp interface immersed boundary method for compressible viscous flows[J]. Journal of Computational Physics, 2007, 225(1):528-553. [13] AURELL J, HOLDER A L, GULLETT B K, et al. Characterization of M4 carbine rifle emissions with three ammunition types[J]. Environmental Pollution, 2019, 254(Part A): 112982. [14] 罗鹏. 膨胀波火炮流场分析及应用研究[D].太原:中北大学,2020. LUO P. The flow field analysis and application of rarefation wave gun[D]. Taiyuan:North University of China, 2020. (in Chinese) [15] 孙明亮,陆林,刘宁, 等.液体发射药迫击炮内弹道燃烧稳定性[J].兵工学报,2020,41(11):2145-2154. SUN M L, LU L, LIU N, et al. Combustion stability of liquid propellant mortar in interior ballistics[J]. Acta Armamentarii, 2020,41(11):2145-2154. (in Chinese) [16] 张小兵. 枪炮内弹道学[M]. 北京:北京理工大学出版社,2014. ZHANG X B. Interior ballistics of guns[M]. Beijing: Beijing Institute of Technology Press, 2014. (in Chinese) [17] WESTBROOK C K. Chemical kinetics of hydrocarbon oxidation in gaseous detonations[J]. Combustion and Flame, 1982, 46:191-210. [18] LEVY J.M. Higher hydrocarbon combustion 1. Primary process in fuel-rich acetylene combustion[J]. Combustion and Flame, 1982, 46:7-16. [19] VEGUILLAS J, DIAZ M.A, PALOMARES F. Rate coefficients for unimolecular chemical reactions[J]. Molecular Physics, 1983, 50(3):403-416. [20] 翁春生, 王浩. 计算内弹道学[M]. 北京:国防工业出版社, 2006. WENG C S, WANG H. Computational interior ballistics[M]. Beijing:National Defense Industry Press, 2006. (in Chinese) [21] KEE R J, RUPLEY F, MILLER J. Chemkin-II: a fortran chemical kinetics package for the analysis of gasphase chemical and plasma kinetics:SAND 89-8009B[R]. Livermore, CA, US: Sandia National Laboratories, 1989.
|