欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2017, Vol. 38 ›› Issue (9): 1845-1853.doi: 10.3969/j.issn.1000-1093.2017.09.023

• 研究简报 • 上一篇    下一篇

基于拓扑优化技术的军用头盔内胆结构三维打印

姜缪文1,2, 闫健卓2, 陈继民1,2   

  1. (1.北京工业大学 激光工程研究院, 北京 100124; 2.北京市数字化医疗3D打印工程技术中心, 北京 100124)
  • 收稿日期:2017-03-02 修回日期:2017-03-02 上线日期:2017-11-03
  • 通讯作者: 闫健卓(1973—),女,副教授,博士,硕士生导师 E-mail:yanjianzhuo@bjut.edu.cn
  • 作者简介:姜缪文(1991—),男,硕士研究生。E-mail:jiangmiaowen415@163.com
  • 基金资助:
    北京市自然科学基金项目(Z140002); 北京市科技创新项目(Z141100002814001)

3D Printing of Military Helmet Liner Structure Based on Topology Optimization

JIANG Miao-wen 1,2, YAN Jian-zhuo2, CHEN Ji-min1,2   

  1. (1.Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China;2.Beijing Digital Medical 3D Printing Engineering Technology Center, Beijing 100124, China)
  • Received:2017-03-02 Revised:2017-03-02 Online:2017-11-03

摘要: 针对目前军用头盔的轻量化设计问题,提出基于拓扑优化技术的军用头盔内胆轻量化设计方法。利用三维(3D)打印在成型复杂异形结构时的优势,建立具有计算机建模、数值模拟、3D打印以及工程验证的军用头盔内胆结构轻量化设计流程。根据有限元分析法,提出一种基于结构势能最小的拓扑优化算法。设计流程主要包括:通过计算机辅助设计软件对设计对象进行3D建模;使用计算机辅助分析软件HyperWorks中的HyperMesh建立有限元模型;通过HyperWorks中的OptiStruct进行拓扑优化设计,查看拓扑优化模型的位移结果,确定设计结构是否满足约束条件。为满足头盔所必须具有的吸能防撞功能需求,在拓扑优化后的头盔内胆基础上,在其侧面加载蜂窝式吸能结构。使用结构优化设计软件solidThinking Inspire对带有蜂窝式结构的头盔内胆结构进行数值分析验证,模拟真实的头盔佩戴工况,优化前后的von Mises最大等效应力近似一致。对实验模型进行工程受力验证,对比优化前后军用头盔内胆的承受载荷能力。实验结果表明:在满足一定的约束条件和功能需求的情况下,拓扑优化结构可达到轻量化设计的目的,减重效果可达到17.14%,最大承受力达到原始结构的93.72%;同时3D打印技术结合数值模拟可以缩短研发周期,提高制造效率。

关键词: 兵器科学与技术, 数值模拟, 三维打印, 军用头盔内胆, 拓扑优化, 蜂窝吸能结构

Abstract: A lightweight design method of military helmet liner structure based on the topology optimization technology is presented for the lightweight design of military helmet. The advantages of 3D printing in the shape of complex structures are taken to set up a lightweight design process for the helmet liner structure, in which includes the computer modeling, numerical simulation, 3D printing, and engineering verification. A topological optimization algorithm based on the minimum potential energy is summarized according to the finite element analysis method. In the design process, the computer-aided design software UG is used to perform 3D modeling for design objects, and the computer-aided analysis software HyperMesh in HyperWorks is used to build a finite element model, and view the displacement results of the topology optimization model whether the design structure meets the constraints through OptiStruct in HyperWorks for the topology optimization. In order to meet the functions of the energy absorption and anticollision, a honeycomb-type energy absorbing structure is added on the side of topologically optimized helmet liner. In experiment, solidThinking Inspire software is used to verify the helmet liner with the honeycomb structure. The simulation shows that the maximum equivalent stresses of Von-Mises before and after topology optimization are similar. The experimental model is tested, and the load capacities of helmets before and after optimization are compared. The experimental results show that, in the case of certain constraints and functional requirements, the purpose of the lightweight design can be achieved, the weight reduction can reach to 17.14%, and the maximum bearing capacity of the topologically optimized structure reaches to 93.72% of the original structure. At the same time, 3D printing technology with numerical simulation can shorten the research and development cycle, and improve manufacturing efficiency. Key

Key words: ordnancescienceandtechnology, numericalsimulation, three-dimensionalprinting, militaryhelmetliner, topologyoptimization, honeycombenergyabsorptionstructure

中图分类号: