欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于GOTDBO算法的复杂约束条件下无人机航迹规划

张越,张宁*,徐熙平**,潘越   

  1. 长春理工大学 光电工程学院, 吉林 长春 130022
  • 收稿日期:2024-10-28 修回日期:2025-03-10
  • 基金资助:
    吉林省科技发展计划项目(20230201052GX)

UAV Trajectory Planning under Complex Constraints based on GOTDBO Algorithm

ZHANG Yue, ZHANG Ning*, XU Xiping**, PAN Yue   

  1. School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • Received:2024-10-28 Revised:2025-03-10

摘要: 针对传统蜣螂优化算法(DBO)在复杂环境下无人机航迹规划中表现出稳定性差、寻优能力不足的问题,提出一种融合复合种群策略与自适应t分布扰动的蜣螂优化算法(DBO optimization algorithm that integrates the compound population strategy and adaptive t - distribution perturbation,GOTDBO)。GOTDBO算法在DBO算法的基础上,结合复合种群初始化策略、自适应扰动全局勘探策略和自适应t分布扰动策略,有效提升了算法的全局探索和局部开发能力,提高了算法的收敛速度。通过构建综合考虑总飞行长度、转角弯度和最大飞行方向变化的目标函数,并引入惩罚函数法处理路径中的禁飞区和其他约束,进一步优化了航迹的平滑性与安全性。实验结果表明,在航程上,GOTDBO算法在复杂环境中的不同场景下,最大航程表现出色,能规划紧凑高效航迹,提升续航经济性;威胁规避方面,其接近威胁区域次数最少,飞行安全性更高;高度控制上,高度偏离程度低,能稳定精准控高。虽在航迹平滑度上与其他算法相当,但GOTDBO算法在多核心指标上优势显著,在无人机航迹规划中节能高效、安全可靠,具有高应用价值与广阔前景。

关键词: 无人机, 航迹规划, 蜣螂优化算法, 佳点集, 自适应t分布

Abstract: Aiming at the problems of poor stability and insufficient optimization ability of the traditional dung beetle optimization algorithm (DBO) in unmanned aerial vehicle (UAV) trajectory planning in complex environments, a dung beetle optimization algorithm with composite population strategy and adaptive t-distribution disturbance (GOTDBO) is proposed. Based on the DBO algorithm, the GOTDBO algorithm combines the composite population initialization strategy, the adaptive disturbance global exploration strategy and the adaptive t-distribution disturbance strategy, effectively enhancing the global exploration and local exploitation capabilities of the algorithm and improving the convergence speed of the algorithm. By constructing an objective function that comprehensively considers the total flight length, corner curvature and maximum flight direction change, and introducing the penalty function method to handle no-fly zones and other constraints in the path, the smoothness and safety of the trajectory are further optimized. Experimental results show that in terms of the flight range, the GOTDBO algorithm performs excellently in different scenarios of complex environments, with remarkable maximum flight range. It can plan compact and efficient trajectories, improving the endurance economy. In terms of threat avoidance, it approaches the threat area the least number of times, providing higher flight safety. In terms of altitude control, the degree of altitude deviation is low, enabling stable and accurate altitude control. Although the path smoothness is comparable to that of other algorithms, the GOTDBO algorithm has significant advantages in multiple core indicators. It is energy - efficient, safe, and reliable in UAV trajectory planning, and has high application value and broad prospects.

Key words: UAV, trajectory planning, dung beetle optimization algorithm, good point set, adaptive t-distribution

中图分类号: