欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于高斯过程回归的无人车辆轨迹跟踪模型预测控制

李秦1*(), 何洪文1**(), 胡满江2   

  1. (1. 北京理工大学 高端汽车集成与控制全国重点实验室,北京 100081;2. 湖南大学 整车先进设计制造技术全国重点实验室,湖南 长沙 410082)
  • 收稿日期:2024-09-29 修回日期:2024-11-22
  • 通讯作者:

    *邮箱:qinlee1993@163.com  

    **邮箱:hwhebit@bit.edu.cn

  • 基金资助:
    湖南大学整车先进设计制造技术全国重点实验室开放基金项目(32215008)

Model Predictive Control of Unmanned Vehicle Trajectory Tracking Based on Gaussian Process Regression

LI Qin1*(), HE Hongwen1**(), HU Manjiang2   

  1. (1. National Key Laboratory for Advanced Vehicle Integration and Control, Beijing Institute of Technology, Beijing 100081, China; 2. State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Human University, Changsha 410082, China)
  • Received:2024-09-29 Revised:2024-11-22

摘要: 轨迹跟踪是无人驾驶控制系统中至关重要的功能之一。考虑到车辆动力学模型在轨迹跟踪算法中的重要性,本文针对性地提出了基于高斯过程回归(Gaussian process regression, GPR)的模型预测控制方法(model predictive control, MPC)。首先,提出了基于单轨动力学模型的车辆状态融合估计方法,获得GPR误差补偿模型;其次,基于车辆动力学的轨迹跟踪误差,推导GPR误差补偿模型在预测时域的迭代方程,对预测时域内的车辆状态进行模型误差动态补偿;最后,通过搭建实车验证平台,开展典型工况验证,与无误差补偿模型预测控制方法对比,结果表明,此方法轨迹跟踪精度得到明显提升,同时还兼顾了车辆舒适性。

关键词: 高斯过程回归, 模型预测控制, 轨迹跟踪, 无人驾驶

Abstract: Trajectory tracking is a crucial functionality in the autonomous driving control system. Acknowledging the critical role of the vehicle dynamic model, this paper proposes a method utilizing model predictive control with state compensation from Gaussian process regression for path tracking. First, a vehicle state fusion estimation method based on the single-track dynamics model was developed to obtain the GPR compensation model. Second, based on the trajectory tracking error from vehicle dynamics, the iterative equation for GPR error compensation within the predictive horizon is derived to dynamically compensate for model errors in the vehicle state prediction. Finally, a real-vehicle validation platform is constructed to validate the method under typical driving conditions. Compared with predictive control methods without GPR compensation, the results show the proposal method significantly improved trajectory tracking accuracy while simultaneously enhancing vehicle comfort.

Key words: Gaussian process regression, model predictive control, trajectory tracking, autonomous driving

中图分类号: