欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于MDEPSO算法的无人机三维航迹规划

肖鹏1,于海霞1,黄龙2*(),张司明1   

  1. (1. 空军航空大学,吉林 长春 130022;2. 31827部队,北京 100195)
  • 收稿日期:2024-08-21 修回日期:2025-03-03
  • 通讯作者: *通信作者邮箱:hanglong_163@163.com

3D Path Planning of Unmanned Aerial Vehicle Based on MDEPSO Algorithm

XIAO Peng1, YU Haixia1, HUANG Long2*(), ZHANG Siming1   

  1. (1. Aviation University of Air Force, Changchun 130022, Jilin, China; 2. Unit 31827 of PLA, Beijing 100195, China)
  • Received:2024-08-21 Revised:2025-03-03

摘要: 针对经典粒子群算法(particle swarm optimization,PSO)在无人机(unmanned aerial vehicle,UAV)三维航迹规划过程中全局搜索能力不足、易陷入局部最优等问题,研究提出一种多维增强粒子群优化算法(multi-dimensional enhanced PSO,MDEPSO)。该算法首先通过引入改善因子,在粒子寻优各个阶段实现动态调整惯性权重,提升种群适应性和克服局部最优能力;其次依靠动态约束方程实现学习因子增强,促使粒子间信息共享更为高效,改善算法自学习能力;随后有序融合混沌初始化和精英反向学习进化等策略优势,重新规划粒子群进化流程,增强粒子在迭代过程中的均衡性和多样性,提升算法收敛精度。实验中通过测试函数横向对比和复杂三维任务场景纵向应用,MDEPSO算法在新的多维目标函数指标中相较于PSO算法UAV航迹规划能力获得了提升,在5种比对算法中表现出较好的有效性和竞争力。

关键词: 无人机, 航迹规划, 粒子群算法, 混沌, 精英反向学习策略

Abstract: In order to solve the problem that the classical particle swarm optimization (PSO) has insufficient global search ability and is easy to fall into local optimality in the course of UAV 3D flight path planning, a multi-dimensional enhanced particle swarm optimization (MDEPSO) algorithm is proposed. Firstly, by introducing improvement factors, the algorithm dynamically adjusts the inertia weights in each stage of particle optimization, which improves the group adaptability and overcome the local optimal ability Secondly, the dynamic constraint equation is used to enhance the learning factor, which makes the information sharing between particles more efficient and improves the self-learning ability of the algorithm. Then the orderly integration of chaos initialization and elite reverse learning evolution strategy advantages, re-planning the particle swarm evolution process, enhance the balance and diversity of particles in the iterative process. In the experiment, through horizontal comparison of test functions and vertical application in complex three-dimensional battlefield environment, MDEPSO algorithm has improved UAV track planning ability compared with PSO algorithm in the new multidimensional objective function index, showing better effectiveness and competitiveness among the five comparison algorithms.

Key words: unmanned aerial vehicle, path planning, particle swarm optimization, chaos, elite backward learning strategy