[1] |
孙承纬, 卫玉章, 周之奎. 应用爆轰物理[M]. 北京: 国防工业出版社, 2000.
|
|
SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics[M]. Beijing: National Defense Industry Press, 2000.
|
[2] |
舒俊翔, 裴红波, 黄文斌, 等. 几种常用炸药的爆压与爆轰反应区精密测量[J]. 爆炸与冲击, 2022, 42(5): 052301.
|
|
SHU J X, PEI H B, HUANG W B, et al. Accurate measurement of detonation reaction zones of several commonly-used explosives[J]. Explosion and Shock Waves, 2022, 42(5): 052301. (in Chinese)
|
[3] |
MADER C. Numerical modeling of detonation[M]. Berkeley,CA, US: University of California Press, 1979.
|
[4] |
PERRY W, DUQUE A, MANG J, et al. Computing continuum-level explosive shock and detonation response over a wide pressure range from microstructural details[J]. Combustion and Flame, 2021, 231:111470.
|
[5] |
LIANG X, WANG R L. Verification and validation of detonation modeling[J]. Defence Technology, 2019, 15(1):398-408.
|
[6] |
LIANG X, WANG R L, GHANEM R. Uncertainty quantification of detonation through adapted polynomial chaos[J]. International Journal for Uncertainty Quantification, 2020, 10(1):83-100.
|
[7] |
梁霄, 陈江涛, 王瑞利. 高维参数不确定爆轰的不确定度量化[J]. 兵工学报, 2020, 41(4):723-734.
|
|
LIANG X, CHEN J T, WANG R L. Uncertainty quantification of detonation with high-dimensional parameter uncertainty[J]. Acta Armamentarii, 2020, 41(4):723-734. (in Chinese)
|
[8] |
COLEMAN H, STEELE W. Experimentation and uncertainty: experimentation uncertainty analysis for engineers[M]. New York,NY, US: John Wiley & Sons, 1999.
|
[9] |
戴诚达, 王翔, 谭华. Hugoniot实验的粒子速度测量不确定度分析[J]. 高压物理学报, 2005, 19(2):113-119.
|
|
DAI C D, WANG X, TAN H. Equation for uncertainty of particle velocity in Hugoniot measurements[J]. Chinese Journal of High Pressure Physics, 2005, 19(2):113-119. (in Chinese)
|
[10] |
DAVIS W. Complete equation of state for unreacted solid explosive[J]. Combustion & Flame, 2000, 120:399-403.
|
[11] |
刘俊明, 张旭, 裴红波, 等. JB-9014钝感炸药冲击Hugoniot关系测量[J]. 高压物理学报, 2018, 32(3):033202.
|
|
LIU J M, ZHANG X, PEI H B, et al. Measurement of Hugoniot relation for JB-9014 insensitive explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(3):033202. (in Chinese)
|
[12] |
WESCOTT B, STEWART D, DAVIS W. Equation of state and reaction rate for condensed-phase explosive[J]. Journal of Applied Physics, 2005, 98: 053514.
|
[13] |
HU J Q, CHEN Z. Atomistic study of shock Hugoniot in columnar nano-crystalline copper[J]. Computational Materials Science, 2021, 197:110635.
|
[14] |
周霖, 王昭元, 张向荣, 等. DNP炸药冲击Hugoniot关系实验研究[J]. 含能材料, 2021, 29(9): 833-839.
|
|
ZHOU L, WANG Z Y, ZHANG X R, et al. Experimental measurement on Hugoniot relationship of DNP explosive[J]. Chinese Journal of Energetic Materials, 2021, 29(9): 833-839. (in Chinese)
|
[15] |
LI X, ZHAI J Y, SHEN Z J. Elastic Hugoniot curve of one-dimensional Wilkins model with general Grüneisen-type equation of state[J]. Journal of Computational Physics, 2022, 464:111337.
|
[16] |
SVINGALA F, HARGATHER M, SETTLES G. Optical techniques for measuring the shock Hugoniot using ballistic projectile and high-explosive shock initiation[J]. International Journal of Impact Engineering, 2012, 50:76-82.
|
[17] |
TSILIFIS P, GAHNEM R. Bayesian adaptation of chaos representations using variationalinference and sampling on geodesics[J]. Proceedings of the Royal Society, A:Mathematical, Physicaland Engineering Sciences, 2018,474:11350.
|
[18] |
JACKSON S. A pressure- or velocity-dependent acceleration rate law for the shock to detonation transition process in PBX 9502 high explosive[J]. Combustion and Flame, 2020, 213:98-106.
|
[19] |
孙海权, 洪滔. PBX-9502炸药超压爆轰条件下的状态方程[J]. 含能材料, 2007, 15(5):455-459.
|
|
SUN H Q, HONG T. Equations of state for PBX-9502 in the condition of strong detonation[J]. Chinese Journal of Energetic Materials, 2007, 15(5): 455-459. (in Chinese)
|
[20] |
GUSTAVSEN R, SHEFFIELD S, ALCON R. Measurements of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX-9502:Wave forms from embedded gauges and comparison of four different material lots[J]. Journal of Applied Physics, 2006, 99(6):114907.
|
[21] |
刘俊明. JB-9014炸药未反应状态方程研究[D]. 绵阳: 中国工程物理研究院, 2019.
|
|
LIU J M. Equation of state of un-reacted explosive JB-9014[D]. Mianyang: China Academy of Engineering Physics, 2019. (in Chinese)
|
[22] |
ANDERSON E, CHIQUETE C, JACKSON S. Experimental measurement of energy release from an initiating layer in an insensitive explosive[J]. Proceedings of Combustion Institute, 2021, 38:3733-3840.
|
[23] |
PENG K F, ZHENG Z J, PAN H, et al. Quasi-static and dynamic compaction of granular materials: astrain-activated statistical compaction model and its evaluation[J]. Mechanics of Materials, 2022, 167:104250.
|
[24] |
ANDERSON T, DARLING D. A test of goodness of fit[J]. Journal of the American Statistical Association, 1954, 49:765-769.
|
[25] |
ROSENBLATT W. Remarks on a multivariate transformation[J]. Annals of Mathematical Statistics, 1952, 23(1): 470-472.
|
[26] |
CHIDESTER S, VANDERSALL K, TARVER C. Shock initiation of damaged explosives[R]. LLNL-CONF-418560, 2009.
|
[27] |
CRAIG B G. Measurements of the detonation-front structure in condensed phase explosives[C]// Proceeding of the 10th Symposium(International) on Combustion. Amsterdam, the Netherlands: Elsevier, 1965, 10(1):863-867.
|