[1] 王军国.喷涂聚脲加固粘土砖砌体抗动载性能试验研究及数值分析[D].合肥:中国科学技术大学,2017. WANG J G. Experimental and numericaI investigation of clay brick masonry walls strengthened with spary polyurea elastomer under blast loads[D].Hefei:University of Science and Technology of China, 2017. (in Chinese) [2] 黄微波, 宋奕龙, 马明亮,等. 喷涂聚脲弹性体抗爆抗冲击性能研究进展[J]. 工程塑料应用, 2019, 47(1):152-157. HUANG W B, SONG Y L, MA M L, et al. Research progress on blast mitigation and shock resistance performance of spray polyurea elastomer[J]. Engineering Plastics Application, 2019, 47(1):152-157. (in Chinese) [3] RAMAN S N, NGO T, LU J, et al. Experimental investigation on the tensile behavior of polyurea at high strain rates[J]. Materials & Design, 2013, 50:124-129. [4] GUO H, GUO W G, AMIRKHIZI A V. Constitutive modeling of the tensile and compressive deformation behavior of polyurea over a wide range of strain rates[J]. Construction and Building Materials, 2017, 150:851-859. [5] AMIRKHIZI A V, ISAACS J, MCGEE J, et al. An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects[J]. Philosophical Magazine, 2006, 86(36):5847-5866. [6] GAMONPILAS C, MCCUISTON R. A non-linear viscoelastic material constitutive model for polyurea[J]. Polymer, 2012, 53(17): 3655-3658. [7] LI C Y, LUA J. A hyper-viscoelastic constitutive model for polyurea[J]. Materials Letters, 2009, 63(11):877-880. [8] GUO H, GUO W G, AMIRKHIZI A V, et al. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures[J]. Polymer Testing, 2016,53:234-244. [9] ZHANG X Q, WANG J J, GUO W G, et al. A bilinear constitutive response for polyureas as a function of temperature, strain rate and pressure[J]. Journal of Applied Polymer Science, 2017,134(35): 45256. [10] WANG H, DENG X M, WU H J, et al. Investigating the dynamic mechanical behaviors of polyurea through experimentation and modeling[J].Defence Technology, 2019,15(6):875-884. [11] LIU Q, CHEN P W, ZHANG Y, et al. Compressive behavior and constitutive model of polyurea at high strain rates and high temperatures[J]. Materialstoday Communications, 2020,22: 100834. [12] 吴冲. 玻璃纤维/聚脲复合材料的微观结构与力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2013. WU C.Research on microstructures and mechanical properties of glass fiber/polyurea composites[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese) [13] 石光明,刘春美,冯顺山,等.高弹性体复合材料动态力学性能试验研究[J].北京理工大学报,2015,35(增刊2):182-184. SHI G M, LIU C M, FENG S S, et al. Experimental study on dynamic mechanical properties of polyurea plastomer pomposite material[J]. Transactions of Beijing Institute of Technology,2015,35(S2):182-184.(in Chinese) [14] CAI D Y, SONG M. High mechanical performance polyurea/organoclay nanocomposites[J]. Composites Science and Technology, 2014, 103:44-48. [15] TOADER G, RUSEN E, TEODORESCU M, et al. New polyurea MWCNTs nanocomposite films with enhanced mechanical properties[J]. Journal of Applied Polymer Science, 2017, 134(28):45061. [16] QIAN X D, SONG L, TAI Q L, et al. Graphite oxide/polyurea and graphene/polyurea nanocomposites: a comparative investigation on properties reinforcements and mechanism[J]. Composites Science and Technology, 2013, 74:228-234. [17] LIU Q, CHEN PW, GUO Y S, et al. Mechanical behavior and failure mechanism of polyurea nanocomposites under quasi-static and dynamic compressive loading[J]. Defence Technology,2021,17(2):495-504. [18] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B,1949,62(11):676. [19] 邹蕊璐. 聚脲弹性体的压缩力学特性和变形机理研究[D]. 西安:西北工业大学,2016. ZOU R L. The compression mechanical property and deformation mechanism of polyurea elastomer [D].Xi'an:Northwestern Polytechnical University,2016. (in Chinese) [20] WANG W J, ZHANG X J, CHOUW N, et al. Strain rate effect on the dynamic tensile behaviour of flax fibre reinforced polymer[J]. Composite Structures, 2018,200:135-143. [21] MOONEY M. A theory of large elastic deformation[J]. Journal of Applied Physics, 1940, 11(9):582-592. [22] 李军宝, 李伟兵, 程伟,等. 铝粉/橡胶复合材料力学性能与本构模型研究[J]. 兵工学报, 2018, 39(6):1186-1194. LI J B, LI W B, CHENG W, et al. Mechanical properties and constitutive model of aluminum powder/rubber composites[J].Acta Armamentarii,2018,39(6):1186-1194. (in Chinese) [23] JAMES A G, GREEN A. Strain energy functions of rubber. II. the characterization of filled vulcanizates[J].Journal of Applied Polymer Science, 1975,19(8):2319-2330. [24] MORMAN K N, PAN T Y. Application of finite-element analysis in the design of automotive elastomeric components[J]. Rubber Chemistry and Technology, 1988, 61(3):503-533. [25] TSCHOEGL N W. Constitutive equations for elastomers[J].Journal of Polymer Science Part A-1: Polymer Chemistry,1971,9(7): 1959-1970. [26] OGDEN R W. Large deformation isotropic elasticity - on the correlation of theory and txperiment for incompressible rubber like solids[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1972,326:565-584. [27] SONG B, CHEN W. One-dimensional dynamic compressive behavior of EPDM rubber[J]. Journal of Engineering Materials and Technology, 2003, 125(3): 294-301.
|