[1] 陈慧岩, 张玉. 军用地面无人机动平台技术发展综述[J]. 兵工学报, 2014, 35(10): 1696-1706. CHEN H Y, ZHANG Y. An overview of research on military unmanned ground vehicles[J]. Acta Armamentarii, 2014, 35(10): 1696-1706. (in Chinese) [2] 陈建荣, 郭齐胜, 刘军. 地面运动目标攻击命中概率模型及仿真[J]. 火力与指挥控制, 2007, 32(7): 43-46. CHEN J R, GUO Q S, LIU J. Hit probability model of attacking the mobile ground target and simulation[J]. Fire Control and Command Control, 2007, 32(7): 43-46. (in Chinese) [3] 罗来科, 王耀北, 王顺岭. 稳像火控系统误差分析[J]. 火力与指挥控制, 2002, 27(5): 30-32, 35. LUO L K, WANG Y B, WANG S L. Error analysis of the image-stabilized fire control system[J]. Fire Control and Command Control, 2002, 27(5): 30-32, 35. (in Chinese) [4] 郝强, 南立军, 刘斌, 等. 坦克火控系统瞄准线平移的补偿方法[J]. 火炮发射与控制学报, 2018, 39(3): 71-75. HAO Q, NAN L J, LIU B, et al. Compensation method of aiming line translation of tank fire control system[J]. Journal of Gun Launch & Control, 2018, 39(3): 71-75. (in Chinese) [5] 钟洲, 姜毅, 刘群. 车载防空导弹行进间发射过程动力学数值分析[J]. 兵工学报, 2014, 35(1): 83-87. ZHONG Z, JIANG Y, LIU Q.Dynamics numerical analysis of vehicle-mounted antiaircraft missile launching on the move[J]. Acta Armamentarii, 2014, 35(1): 83-87. (in Chinese) [6] 慕巍, 张宝宜, 王新明, 等. 适用于光电跟踪仪的高速目标跟踪控制算法[J]. 激光与红外, 2020, 50(4): 468-474. MU W, ZHANG B Y, WANG X M, et al.High speed target tracking control algorithm fbr electro-optical tracker[J]. Laser & Infrared, 2020, 50(4): 468-474. (in Chinese) [7] 熊珍凯, 陈汀峰. 精确跟瞄控制技术研究[J]. 强激光与粒子束, 2012, 24(6): 1339-1343. XIONG Z K, CHEN T F. High precision tracking and pointing control technique[J]. High Power Laser and Particle Beams, 2012, 24(6): 1339-1343. (in Chinese) [8] 张卫民, 梁建奇, 马红卫, 等. 自行火炮自动直瞄控制方法研究[J]. 兵工学报, 2015, 36(1): 182-186. ZHANG W M, LIANG J Q, MA H W, et al. An automatic direct aiming control method of self-propelled artillery[J]. Acta Armamentarii, 2015, 36(1): 182-186. (in Chinese) [9] 朱斌, 谢杰, 孙皓泽, 等. 某新型坦克稳瞄系统自抗扰控制器的设计[J]. 计算机工程与应用, 2013, 49(增刊3): 71-75. ZHU B, XIE J, SUN H Z, et al. Design of active disturbance rejection controller for some new type tank steady sighting system[J]. Computer Engineering and Applications, 2013, 49(S3): 71-75. (in Chinese) [10] 张文丽, 郭俊文, 曲俊海, 等. 基于自适应差分进化算法的武器稳定系统参数辨识[J]. 火力与指挥控制, 2020, 45(5): 119-124. ZHANG W L, GUO J W, QU J H, et al. Parameter identification of weapon stability system based on adaptive differential evolution algorithm[J]. Fire Control and Command Control, 2020, 45(5): 119-124. (in Chinese) [11] 鲁浩. 基于瞬时转向中心实时估计的滑动转向车辆运动轨迹预测方法研究[D]. 北京:北京理工大学, 2016. LU H. Trajectory prediction based on estimation of instantaneous centers of rotation in real time for skid-steer vehicles[D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese) [12] 盖江涛, 刘春生, 马长军, 等. 考虑履带滑转滑移的电驱动履带车辆转向控制 [J]. 兵工学报, 2021, 42(10): 2092-2101. GAI J T, LIU C S, MA C J, et al.Steering control of electric drive tracked vehicle considering tracks' skid and slip[J]. Acta Armamentarii, 2021, 42(10): 2092-2101. (in Chinese) [13] 李壮. 基于深度强化学习的六自由度机械臂避障规划[D]. 北京理工大学, 2020. LI Z. Obstacle avoidance planning of six degrees of freedom manipulator based on deep reinforcement learning[D]. Beijing: Beijing Institute of Technology, 2020. (in Chinese) [14] 冷鹏飞, 徐朝阳. 一种深度强化学习的雷达辐射源个体识别方法[J]. 兵工学报, 2018, 39(12): 2420-2426. LENG P F, XU C Y. Specific emitter identification based on deep reinforcement learning[J]. Acta Armamentarii, 2018, 39(12): 2420-2426. (in Chinese) [15] LIU B Y, WANG L J, LIU M. Lifelong federated reinforcement learning: a learning architecture for navigation in cloud robotic systems[J]. IEEE Robotics Automation Letters, 2019, 4(4): 4555-4562. [16] GONG C, LI Z, ZHOU X, et al. Orientation-aware planning for parallel task execution of omni-directional mobile robot[C]∥Proceedings of 2021 International Conference on Intelligent Robots and Systems. Prague, Czech: IEEE/RSJ, 2021: 6891-6898. [17] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. [18] WANG Z, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]∥Proceedings of the 33rd International Conference on Machine Learning. New York, NY, US: PMLR, 2016: 1995-2003. [19] DADAY M J A, MILLADO K F M R. Enhanced reinforcement learning with targeted dropout[C]∥Proceedings of 2019 International Conference on Digitization (ICD). Sharjah, Emirate: IEEE, 2019: 207-211. [20] ROHMER E, SINGH S P N, FREESE M. V-REP: A versatile and scalable robot simulation framework[C]∥Proceedings of 2013 International Conference on Intelligent Robots and Systems (IROS). Tokyo, Japan: IEEE/RSJ, 2013: 1321-1326. [21] PERLIN K. Improving noise[J]. ACM Transactions on Graphics, 2002, 21(3): 681-682.
|