[1] |
侯保林, 孙全兆. 武器发射系统自动化技术[M]. 北京: 北京理工大学出版社, 2018.
|
|
HOU B L, SUN Q Z. Weapon launching system automation technology[M]. Beijing: Beijing Institute of Technology Press, 2018. (in Chinese)
|
[2] |
侯保林, 马建伟. 链式自动化弹仓的最优保性能控制算法[J]. 兵工学报, 2009, 30(9):1164-1169.
|
|
HOU B L, MA J W. Optimal guaranteed cost control algorithm for automatic chain shell magazine[J]. Acta Armamenarii, 2009, 30(9):1164-1169. (in Chinese)
|
[3] |
姚来鹏, 侯保林, 刘曦, 等. 基于非线性干扰观测器的自动弹仓终端滑模控制[J]. 中国机械工程, 2020, 31(15):1787-1792,1797.
doi: 10.3969/j.issn.1004-132X.2020.15.004
|
|
YAO L P, HOU B L, LIU X, et al. Terminal sliding mode control of automatic shell magazine based on nonlinear disturbance observer[J]. China Mechanical Engineering, 2020, 31(15):1787-1792,1797. (in Chinese)
doi: 10.3969/j.issn.1004-132X.2020.15.004
|
[4] |
邹权, 钱林方, 徐亚栋, 等. 链式回转弹仓的自适应鲁棒控制[J]. 兵工学报, 2014, 35(11):1922-1927.
doi: 10.3969/j.issn.1000-1093.2014.11.026
|
|
ZOU Q, QIAN L F, XU Y D, et al. Adaptive robust control of rotational chain shell magazine[J]. Acta Armamenarii, 2014, 35(11):1922-1927. (in Chinese)
|
[5] |
岳才成, 钱林方, 徐亚栋, 等. 基于指数趋近律链传动弹仓自适应模糊滑模控制[J]. 上海交通大学学报, 2018, 52(6):750-756.
doi: 10.16183/j.cnki.jsjtu.2018.06.017
|
|
YUE C C, QIAN L F, XU Y D, et al. Adaptive fuzzy sliding mode control for a chain driving shell magazine based on exponential reaching law[J]. Journal of Shanghai Jiao Tong University, 2018, 52(6):750-756. (in Chinese)
|
[6] |
岳才成, 钱林方, 孔建寿, 等. 火炮模块药输送伺服系统自适应模糊滑模控制[J]. 兵工学报, 2017, 38(10):1891-1898.
doi: 10.3969/j.issn.1000-1093.2017.10.003
|
|
YUE C C, QIAN L F, KONG J S, et al. Adaptive fuzzy sliding mode control for the artillery modular charge transport servo system[J]. Acta Armamenarii, 2017, 38(10):1891-1898. (in Chinese)
|
[7] |
CHEN B, LIU X P, GE S Z, et al. Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(6):1012-1021.
doi: 10.1109/TFUZZ.2012.2190048
URL
|
[8] |
WANG P X, RUI X T, YU H L, et al. Adaptive control of track tension estimation using radial basis function neural network[J]. Defence Technology, 2021, 17(4):1423-1433.
doi: 10.1016/j.dt.2020.07.011
|
[9] |
LU S M, LI D P, LIU Y J. Adaptive neural network control for uncertain time-varying state constrained robotics systems[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(12):2511-2518.
doi: 10.1109/TSMC.6221021
URL
|
[10] |
VAN M, GE S Z S. Adaptive fuzzy integral sliding-mode control for robust fault-tolerant control of robot manipulators with disturbance observer[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(5): 1284-1296.
doi: 10.1109/TFUZZ.2020.2973955
URL
|
[11] |
LIU Q, LI D Y, GE S Z S, et al. Adaptive bias RBF neural network control for a robotic manipulator[J]. Neurocomputing, 2021, 447:213-223.
doi: 10.1016/j.neucom.2021.03.033
URL
|
[12] |
LIU Y J, GAO Y, TONG S, et al. Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(1):16-28.
doi: 10.1109/TFUZZ.2015.2418000
URL
|
[13] |
HE W, DONG Y T. Adaptive fuzzy neural network control for a constrained robot using impedance learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4):1174-1186.
doi: 10.1109/TNNLS.2017.2665581
pmid: 28362618
|
[14] |
LI G, YU J P, CHEN X K. Adaptive fuzzy neural network command filtered impedance control of constrained robotic manipulators with disturbance observer[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. DOI: 10.1109/TNNLS.2021.3113044.
|
[15] |
HE W, HUANG H F, GE S Z S. Adaptive neural network control of a robotic manipulator with time-varying output constraints[J]. IEEE Transactions on Cybernetics, 2017, 47(10):3136-3147.
doi: 10.1109/TCYB.2017.2711961
pmid: 28767378
|
[16] |
YANG C G, HUANG D Y, HE W, et al. Neural control of robot manipulators with trajectory tracking constraints and input saturation[J]. IEEE Transactions on Neural Networks Learning Systems, 2021, 32(9):4231-4242.
doi: 10.1109/TNNLS.2020.3017202
URL
|
[17] |
LIANG X L, WANG D P, GE S S. Continuous predictive control based on dynamic surface design with application to trajectory tracking[J]. Applied Ocean Research, 2021, 111:102615.
doi: 10.1016/j.apor.2021.102615
URL
|
[18] |
HAO Z W, YUE X K, WEN H W, et al. Full-state-constrained non-certainty-equivalent adaptive control for satellite swarm subject to input fault[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(3):482-495.
doi: 10.1109/JAS.2021.1004216
URL
|
[19] |
LING S, WANG H, LIU P X. Adaptive fuzzy dynamic surface control of flexible-joint robot systems with input saturation[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1):97-107.
doi: 10.1109/JAS.2019.1911330
URL
|
[20] |
YU J P, ZHAO L, YU H S, et al. Fuzzy finite-time command filtered control of nonlinear systems with input saturation[J]. IEEE Transactions on Cybernetics, 2018, 48(8):2378-2387.
doi: 10.1109/TCYB.2017.2738648
pmid: 28841564
|
[21] |
ZHOU Q, WANG L J, WU C W, et al. Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(1):1-12.
doi: 10.1109/TSMC.2016.2557222
URL
|
[22] |
FANG Y, HU J, LIU W H, et al. Smooth and time-optimal S-curve trajectory planning for automated robots and machines[J]. Mechanism and Machine Theory, 2019,137:127-153.
|