[1] |
卢佳兴, 刘海鸥, 关海杰, 等. 基于双参数自适应优化的无人履带车辆轨迹跟踪控制[J]. 兵工学报, 2023, 44(4): 960-971.
|
|
LU J X, LIU H O, GUAN H J, et al. Trajectory tracking control of unmanned tracked vehicles based on adaptive dual-parameter optimization[J]. Acta Armamentarii, 2023, 44(4): 960-971. (in Chinese)
doi: 10.12382/bgxb.2022.0009
|
[2] |
ATTIA R, ORJUELA R, BASSET M. Combined longitudinal and lateral control for automated vehicle guidance[J]. Vehicle System Dynamics, 2014, 52(2): 261-279.
doi: 10.1080/00423114.2013.874563
URL
|
[3] |
YU Y H, LI Y N, LIANG Y X, et al. Decoupling motion tracking control for 4wd autonomous vehicles based on the path correction[J]. Proceedings of the Institution of Mechanical Engineers, 2022, 236(1): 99-108.
|
[4] |
WEI Z, WU W H, PENG G, et al. Application of linear active disturbance rejection decoupling control for AUV three-dimensional trajectory tracking control[C]// Proceedings of the 2021 33rd Chinese Control and Decision Conference. Kunming, China:IEEE, 2021: 5214-5219.
|
[5] |
WANG H R, WANG Q D, CHEN W W, et al. A novel path tracking approach considering safety of the intended functionality for autonomous vehicles[J]. Proceedings of the Institution of Mechanical Engineers, 2022, 236(4): 738-752.
|
[6] |
陈特, 徐兴, 蔡英凤, 等. 基于状态估计的无人车前轮转角与横摆稳定协调控制[J]. 北京理工大学学报, 2021, 41(10): 1050-1057.
|
|
CHEN T, XU X, CAI Y F, et al. Coordinated control of front-wheel steering angle and yaw stability for unmanned ground vehicle based on state estimation[J]. Transactions of Beijing Institute of Technology, 2021, 41(10): 1050-1057. (in Chinese)
|
[7] |
LI D P, LI D J. Adaptive neural tracking control for an uncertain state constrained robotic manipulator with unknown time-varying delays[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(12): 2219-2228.
doi: 10.1109/TSMC.2017.2703921
URL
|
[8] |
李睿, 项昌乐, 王超, 等. 自动驾驶履带车辆鲁棒自适应轨迹跟踪控制方法[J]. 兵工学报, 2021, 42(6):1128-1137.
doi: 10.3969/j.issn.1000-1093.2021.06.002
|
|
LI R, XIANG C L, WANG C, et al. Robust adaptive trajectory tracking control approach for autonomous tracked vehicles[J]. Acta Armamentarii, 2021, 42(6):1128-1137. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.06.002
|
[9] |
MA R H, WANG L F, ZHANG J Z. Observer-based prescribed performance adaptive terminal sliding mode control for path tracking of autonomous ground vehicles[C]// Proceedings of 2020 Chinese Automation Congress. Shanghai, China:IEEE, 2020: 795-801.
|
[10] |
HU C, GAO H B, GUO J H, et al. RISE-based integrated motion control of autonomous ground vehicles with asymptotic prescribed performance[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(9):5336-5348.
doi: 10.1109/TSMC.2019.2950468
URL
|
[11] |
高振宇, 孙振超, 郭戈. 网联车辆有限时间滑模预设性能队列控制[J]. 控制理论与应用, 2023, 40(1): 1-11.
|
|
GAO Z Y, SUN Z C, GUO G. Finite-time sliding mode prescribed performance platoon control of connected vehicles[J]. Control Theory & Applications, 2023, 40(1): 1-11. (in Chinese)
|
[12] |
FLESCH C, NORMEY-RICO J E, FLESCH C A. A unified anti-windup strategy for SISO discrete dead-time compensators[J]. Control Engineering Practice, 2017, 69(3): 50-60.
doi: 10.1016/j.conengprac.2017.09.002
URL
|
[13] |
何友国, 田肖肖, 袁朝春. 考虑输入饱和的车辆队列协同巡航控制算法[J]. 重庆理工大学学报(自然科学), 2020, 34(9): 47-55.
|
|
HE Y G, TIAN X X, YUAN C C. Cooperative adaptive cruise control algorithm of vehicular platoon considering input saturation[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(9):47-55. (in Chinese)
|
[14] |
YANG H J, WANG J, LI H B, et al. Adaptive cooperative control for air-ground systems with actuator saturation under disturbances[J]. International Journal of Adaptive Control and Signal Processing, 2022, 37(4): 880-914.
doi: 10.1002/acs.v37.4
URL
|
[15] |
LIANG Z C, SHEN M Y, ZHAO J, et al. Adaptive sliding mode fault tolerant control for autonomous vehicle with unknown actuator parameters and saturated tire force based on the center of percussion[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11):11595-11606.
doi: 10.1109/TITS.2023.3289439
URL
|
[16] |
BU X W, JIANG B X, LEI H M. Low-complexity fuzzy neural control of constrained waverider vehicles via fragility-free prescribed performance approach[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(7): 2127-2139.
doi: 10.1109/TFUZZ.2022.3217378
URL
|
[17] |
BU X W, JIANG B X, FENG Y N. Hypersonic tracking control under actuator saturations via readjusting prescribed performance functions[J]. ISA Transactions, 2023, 134: 74-85.
doi: 10.1016/j.isatra.2022.08.016
URL
|
[18] |
YANG C G, HUANG D Y, HE W, et al. Neural control of robot manipulators with trajectory tracking constraints and input saturation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(9):4231-4242.
doi: 10.1109/TNNLS.2020.3017202
URL
|
[19] |
WANG Y Y, HU J B, LI J, et al. Improved prescribed performance control for nonaffine pure-feedback systems with input saturation[J]. International Journal of Robust and Nonlinear Control, 2019, 29(6):1769-1788.
doi: 10.1002/rnc.v29.6
URL
|
[20] |
张守武, 王恒, 陈鹏, 等. 神经网络在无人驾驶车辆运动控制中的应用综述[J]. 工程科学学报, 2022, 44(2):235-243.
|
|
ZHANG S W, WANG H, CHEN P, et al. Overview of the application of neural networks in the motion control of unmanned vehicles[J]. Chinese Journal of Engineering, 2022, 44(2): 235-243. (in Chinese)
|
[21] |
BOUZAIENE R, HAFSI S, BOUANI F. Adaptive neural network PID controller for nonlinear systems[C]// Proceedings of the 2021 IEEE 2nd International Conference on Signal, Control and Communication.Tunis, Tunisia:IEEE, 2021: 264-269.
|
[22] |
TORK N, AMIRKHANI A, SHOKOUHI S B. An adaptive modified neural lateral-longitudinal control system for path following of autonomous vehicles[J]. Engineering Science and Technology,an International Journal, 2021, 24(1):126-137.
doi: 10.1016/j.jestch.2020.12.004
URL
|
[23] |
ZHANG Y X, WANG L H, LIU Y D. Adaptive neural network-based path tracking control for autonomous combine harvester with input saturation[J]. Industrial Robot: the International Journal of Robotics Research and Application, 2021, 48(4): 510-522.
doi: 10.1108/IR-10-2020-0231
URL
|
[24] |
YUAN X F, HUANG G M, SHI K. Improved adaptive path following control system for autonomous vehicle in different velocities[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(8):3247-3256.
doi: 10.1109/TITS.6979
URL
|
[25] |
XING B H, XU E Y, WEI J, et al. Recurrent neural network non-singular terminal sliding mode control for path following of autonomous ground vehicles with parametric uncertainties[J]. IET Intelligent Transport Systems, 2022, 16(5): 616-629.
doi: 10.1049/itr2.v16.5
URL
|
[26] |
WANG B Y, LEI Y, FU Y, et al. Autonomous vehicle trajectory tracking lateral control based on the terminal sliding mode control with radial basis function neural network and fuzzy logic algorithm[J]. Mechanical Sciences, 2022, 13(2): 713-724.
doi: 10.5194/ms-13-713-2022
URL
|
[27] |
TAGHAVIFAR H, HU C, QIN Y C, et al. EKF-neural network observer based type-2 fuzzy control of autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 4788-4800.
doi: 10.1109/TITS.2020.2985124
URL
|
[28] |
HU J Q, ZHANG Y M, SUBHASH R. Adaptive trajectory tracking for carlike vehicles with input constraints[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 2801-2810.
doi: 10.1109/TIE.2021.3068672
URL
|
[29] |
孙志伟, 李聪. 基于径向基函数神经网络PID与模型预测控制的车辆轨迹跟踪控制[J]. 上海工程技术大学学报, 2022, 36(2):148-158.
|
|
SUN Z W, LI C. Research on trajectory tracking control based on radial basis neural network PID and model predictive control[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 148-158. (in Chinese)
|
[30] |
YANG H J, WANG J, LI H B. Adaptive cooperative control for air-ground systems with actuator saturation under disturbances[J]. International Journal of Adaptive Control and Signal Processing, 2022, 37(4): 880-914.
doi: 10.1002/acs.v37.4
URL
|
[31] |
LU X H, JIA Y M. Adaptive coordinated control of uncertain free-floating space manipulators with prescribed control performance[J]. Nonlinear Dynamics, 2019, 97: 1541-1566.
doi: 10.1007/s11071-019-05071-w
|
[32] |
BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53 (9):2090-2099.
doi: 10.1109/TAC.2008.929402
URL
|
[33] |
LI Y M, TONG S C, LIU L, et al. Adaptive output-feedback control design with prescribed performance for switched nonlinear systems[J]. Automatica, 2017, 80:225-231.
doi: 10.1016/j.automatica.2017.02.005
URL
|
[34] |
XIA H Y, CHEN J Q, LAN F C, et al. Motion control of autonomous vehicles with guaranteed prescribed performance[J]. International Journal of Adaptive Control and Signal Processing, 2019, 18:1510-1517.
|
[35] |
江梦洁, 李家旺, 吕艳芳, 等. 饱和输入限制下欠驱动自主水下航行器水平面航迹跟踪控制[J]. 兵工学报, 2017, 38(11): 2207-2213.
doi: 10.3969/j.issn.1000-1093.2017.11.017
|
|
JIANG M J, LI J W, LÜ Y F, et al. Path tracking control of underactuated autonomous underwater vehicles on horizontal plane within input saturation limit[J]. Acta Armamentarii, 2017, 38(11): 2207-2213. (in Chinese)
|
[36] |
MA H, ZHOU Q, LI H Y, et al. Adaptive prescribed performance control of a flexible-joint robotic manipulator with dynamic uncertainties[J]. IEEE Transactions on Cybernetics, 2022, 52(12):12905-12915.
doi: 10.1109/TCYB.2021.3091531
URL
|
[37] |
GUO K, PAN Y P, YU H Y. Composite learning robot control with friction compensation:a neural network-based approach[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7841-7851.
doi: 10.1109/TIE.41
URL
|
[38] |
吴艳, 王丽芳, 李芳. 基于滑模自抗扰的智能车路径跟踪控制[J]. 控制与决策, 2019, 34(10): 2150-2156.
|
|
WU Y, WANG L F, LI F. Intelligent vehicle path following control based on sliding mode active disturbance rejection control[J]. Control and Decision, 2019, 34(10): 2150-2156. (in Chinese)
|