欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2023, Vol. 44 ›› Issue (11): 3310-3319.doi: 10.12382/bgxb.2023.0963

所属专题: 群体协同与自主技术

• • 上一篇    下一篇

含输入饱和的自动驾驶汽车预设性能自适应控制

李先艳1, 许威2,3, 江磊2,3, 孙泽源2,3, 谢强2,3, 曾怡2,3, 郑冬冬1,2,3,*()   

  1. 1 北京理工大学 自动化学院, 北京 100081
    2 中兵智能创新研究院有限公司, 北京 100072
    3 群体协同与自主实验室, 北京 100072
  • 收稿日期:2023-09-22 上线日期:2023-11-14
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(62103051); 国家自然科学基金项目(92248303)

Adaptive Prescribed Performance Control of Autonomous Vehicles with Input Saturation

LI Xianyan1, XU Wei2,3, JIANG Lei2,3, SUN Zeyuan2,3, XIE Qiang2,3, ZENG Yi2,3, ZHENG Dongdong1,2,3,*()   

  1. 1 School of Automation, Beijing Institute of Technology, Beijing 100081,China
    2 China North Artificial Intelligence & Innovation Research Institute, Beijing 100072,China
    3 Collective Intelligence & Collaboration Laboratory, Beijing 100072,China
  • Received:2023-09-22 Online:2023-11-14

摘要:

为了改善含有输入饱和与未知扰动的自动驾驶车辆系统在执行轨迹跟踪任务时的瞬态和稳态性能,考虑到自动驾驶汽车横向和纵向动态的耦合,设计基于滑模控制和预设性能控制的协调控制器。针对可能出现的输入饱和,基于饱和信号设计辅助系统,并在饱和发生时利用辅助系统调整规定的性能边界,使跟踪误差始终遵守性能约束,避免穿越边界引起系统不稳定。利用神经网络对系统中存在的模型误差以及外部扰动进行拟合和补偿,并设计一种基于复合学习的在线更新算法来训练神经网络。通过Lyapunov方法严格证明了闭环系统的稳定性,并通过仿真验证了新提出的辨识和控制方案的有效性。所设计的协调控制器可以在存在强耦合特性、模型不确定性和外部干扰的情况下保证预定的轨迹跟踪性能。

关键词: 自动驾驶汽车, 输入饱和, 可变边界预设性能控制, 神经网络自适应控制

Abstract:

This paper aims to improve the transient and steady-state performances of autonomous vehicle systems with input saturation and unknown perturbations. Firstly, a coordinated controller based on the sliding mode control and the prescribed performance control is designed considering the coupling between the lateral and longitudinal motion dynamics. To address the possible input saturation, an auxiliary system is designed to adjust the prescribed performance boundaries when saturation occurs, so that the tracking errors always adhere to the performance constraint. Consequently, it avoids the possible instability when the errors cross the performance boundaries. Finally, the neural network is introduced to approximate and compensate for the model uncertainty and external interference, and an online identification scheme based on a composite learning algorithm is proposed to train the neural network. The stability of the closed-loop system is strictly proved by Lyapunov approach, and the effectiveness of the proposed identification and control scheme is verified by simulation. The coordinated controller can be used to ensure the prescribed trajectory tracking performance in the presence of strong coupling characteristics, model uncertainty, and external interference.

Key words: autonomous vehicle, input saturation, variable boundary prescribed performance control, neural network adaptive control

中图分类号: