[1] STRONGE W J, MA X, ZHAO L. Fragmentation of explosively expanded steel cylinders[J]. International Journal of Mechanical Sciences, 1989, 31(11/12): 811-823. [2] 李铁鹏. 战斗部破片初速分布及空间数量分布[D]. 南京:华东工学院, 1988. LI T P. The distribution of warhead fragment muzzle velocity and space quantity[D]. Nanjing:East China Industrial Engineering Institute, 1988. (in Chinese) [3] 王志军, 尹建平. 弹药学[M]. 北京:北京理工大学出版社, 2005. WANG Z J, YIN J P. Ammunition[M]. Beijing: Beijing Institute of Technology Press, 2005. (in Chinese) [4] GURNEY R W. The initial velocities of fragments from bombs, shell, grenades[R]. BRL Report 405, 1943. [5] BOLA M S, MADAN A K, SINGH M, et al. Expansion of metallic cylinders under explosive loading[J]. Defence Science Journal, 2013, 42(3): 157-163. [6] GAO Y G, FENG S S, ZHANG B, et al. Effect of the length-diameter ratio on the initial fragment velocity of cylindrical casing[J]. IOP Conference Series Materials Science and Engineering, 2019, 629(1): 012-020. [7] 冯顺山, 崔秉贵. 战斗部破片初速轴向分布规律的实验研究[J]. 兵工学报, 1987, 11(4): 60-63. FENG S S, CUI B G. An experimental investigation for the axial distribution of initial velocity of shells[J]. Acta Armamentarii, 1987, 11(4): 60-63. (in Chinese) [8] 印立魁, 蒋建伟, 门建兵,等. 立方体预制破片战斗部破片初速计算模型[J]. 兵工学报, 2014, 35(12): 1967-1971. YIN L K, JIANG J W, MEN J B, et al. An initial velocity model of explosively-driven cubical fragments[J]. Acta Armamentarii, 2014, 35(12): 1967-1971. (in Chinese) [9] HUANG G Y, LI W, FENG S S. Axial distribution of Fragment Velocities from cylindrical casing under explosive loading[J]. International Journal of Impact Engineering, 2015, 76: 20-27. [10] KONG X, WU W, LI J, et al. A numerical investigation on explosive fragmentation of metal casing using Smoothed Particle Hydrodynamic method [J]. Materials and Design, 2013, 51(60): 729-741. [11] GUO Z W, HUANG G Y, ZHU W, et al. Mechanism and suppression of the effect of axial rarefaction waves on the eccentric initiation effect [J]. International Journal of Impact Engineering, 2018, 124: 37-47. [12] GAO Y G, FENG S S, YAN X M, et al. Axial distribution of fragment velocities from cylindrical casing with air parts at two ends [J]. International Journal of Impact Engineering, 2020, 140: 44-57. [13] RANDLES P W, LIBERSKY L D. Smoothed particle hydrodynamics: some recent improvements and applications[J]. Computer Methods in Applied Mechanics & Engineering, 1996, 139(1-4): 375-408. [14] RABCZUK T, EIBL J. Modelling dynamic failure of concrete with meshfree methods[J]. International Journal of Impact Engineering, 2006, 32(11): 1878-1897. [15] HAYHURST C J, CLEGG R A. Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates[J]. International Journal of Impact Engineering, 1997, 20(1-5): 337-348. [16] 张雁思, 戴文喜, 王志军. 基于SPH算法的爆破战斗部壳体破碎数值仿真研究[J]. 兵器材料科学与工程, 2015,38(5): 85-88. ZHANG Y S, DAI W X, WANG Z J. Numerical simulation of blasting warheads shell breaking based on SPH method[J]. Ordnance Material Science and Engineering, 2015, 38(5): 85-88. (in Chinese) [17] LI W, HUANG G Y, FENG S S. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge[J]. International Journal of Impact Engineering, 2015, 80: 107-115. [18] 陈刚,陈忠富,陶俊林,等.45钢动态塑性本构参量与验证[J]. 爆炸与冲击, 2005, 25(5): 69-74. CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005,25(5): 69-74. (in Chinese) [19] DYNAMICS C. Release 14.0 documentation for ANSYS AUTODYN[Z]. US: ANSYS Inc., 2011: 150-151. [20] LIAO W, JIANG J W, MEN J B, et al. Effect of the end cap on the fragment velocity distribution of a cylindrical cased charge[J]. Defence Technology, 2020, 17(3): 1052-1061. [21] PREDEBON W W, SMOTHERS W G, ANDERSON C E. Missile warhead modeling: computations and experiments[R]. 1977, ADA047294.
|