Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (4): 240300-.doi: 10.12382/bgxb.2024.0300
Previous Articles Next Articles
PAN Yunwei1, LI Min1,*(), ZENG Xiangguang1, HUANG Ao1, ZHANG Jiaheng1, REN Wenzhe1, PENG Bei2
Received:
2024-04-17
Online:
2025-04-30
Contact:
LI Min
PAN Yunwei, LI Min, ZENG Xiangguang, HUANG Ao, ZHANG Jiaheng, REN Wenzhe, PENG Bei. AUV Obstacle Avoidance and Path Planning Based on Artificial Potential Field and Improved Reinforcement Learning[J]. Acta Armamentarii, 2025, 46(4): 240300-.
Add to citation manager EndNote|Ris|BibTeX
AUV参数 | 数值 | 水下场景 | 数值 |
---|---|---|---|
长度/m | 1.5 | 范围/m | 100×100 |
直径/m | 0.2 | 水密度/(kg·m-3) | 1000 |
速度/(m·s-1) | 2 | 水黏度/(Pa·s) | 0.001 |
质量/kg | 40 | 水流速/(m·s-1) | 0~0.5 |
Table 1 AUV simulation parameters
AUV参数 | 数值 | 水下场景 | 数值 |
---|---|---|---|
长度/m | 1.5 | 范围/m | 100×100 |
直径/m | 0.2 | 水密度/(kg·m-3) | 1000 |
速度/(m·s-1) | 2 | 水黏度/(Pa·s) | 0.001 |
质量/kg | 40 | 水流速/(m·s-1) | 0~0.5 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ka | 5 | 激活函数 | ReLu |
kr | 15 | 衰减因子 | 0.99 |
积极经验提取系数 | 0.01 | 经验库尺寸 | 1×104 |
状态个数 | 12 | 小批量尺寸 | 256 |
动作个数 | 6 | 批训练轮数 | 10 |
ηa | 3×10-4 | 梯度截断 | 0.5 |
ηc | 3×10-4 | 回合最大步数 | 1×105 |
隐藏层数 | 2 | 经验回放常数 | 0.95 |
Table 2 Algorithm parameters
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ka | 5 | 激活函数 | ReLu |
kr | 15 | 衰减因子 | 0.99 |
积极经验提取系数 | 0.01 | 经验库尺寸 | 1×104 |
状态个数 | 12 | 小批量尺寸 | 256 |
动作个数 | 6 | 批训练轮数 | 10 |
ηa | 3×10-4 | 梯度截断 | 0.5 |
ηc | 3×10-4 | 回合最大步数 | 1×105 |
隐藏层数 | 2 | 经验回放常数 | 0.95 |
场景 | 平均奖励 | 平均步数 | 平均路径长度/m | 成功率/% |
---|---|---|---|---|
地图1 | -110 | 995 | 124 | 99 |
地图2 | -261 | 1403 | 141 | 95 |
地图3 | -100 | 1437 | 127 | 96 |
地图4 | -242 | 1340 | 141 | 96 |
Table 3 Algorithm validation
场景 | 平均奖励 | 平均步数 | 平均路径长度/m | 成功率/% |
---|---|---|---|---|
地图1 | -110 | 995 | 124 | 99 |
地图2 | -261 | 1403 | 141 | 95 |
地图3 | -100 | 1437 | 127 | 96 |
地图4 | -242 | 1340 | 141 | 96 |
算法 | 奖励值 | 步数 | 路径长度/m |
---|---|---|---|
D3QN算法 | -1371±302 | 1900±148 | 207±25 |
PPO算法 | -821±140 | 1731±116 | 144±5 |
PR-PPO算法 | -513±52 | 1519±71 | 142±0.5 |
Table 4 Robustness contrast
算法 | 奖励值 | 步数 | 路径长度/m |
---|---|---|---|
D3QN算法 | -1371±302 | 1900±148 | 207±25 |
PPO算法 | -821±140 | 1731±116 | 144±5 |
PR-PPO算法 | -513±52 | 1519±71 | 142±0.5 |
[1] |
王圣洁, 康凤举, 韩翃. 潜艇与智能无人水下航行器协同系统控制体系及决策研究[J]. 兵工学报, 2017, 38(2):335-344.
doi: 10.3969/j.issn.1000-1093.2017.02.018 |
|
|
[2] |
丁文俊, 张国宗, 刘海旻, 等. 面向海流扰动和通信时延的欠驱动AUV编队跟踪控制[J]. 兵工学报, 2024, 45(1):184-196.
doi: 10.12382/bgxb.2023.0417 |
doi: 10.12382/bgxb.2023.0417 |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
杨静, 吴金平, 刘剑, 等. 一种半监督学习潜艇规避防御智能决策方法[J]. 兵工学报, 2024, 45(10):3474-3487.
doi: 10.12382/bgxb.2023.0684 |
doi: 10.12382/bgxb.2023.0684 |
|
[10] |
|
[11] |
|
[12] |
闫皎洁, 张锲石, 胡希平. 基于强化学习的路径规划技术综述[J]. 计算机工程, 2021, 47(10):16-25.
doi: 10.19678/j.issn.1000-3428.0060683 |
doi: 10.19678/j.issn.1000-3428.0060683 |
|
[13] |
|
[14] |
王思鹏, 杜昌平, 郑耀. 基于强化学习的扑翼飞行器路径规划算法[J]. 控制与决策, 2022, 37(4):851-860.
|
|
|
[15] |
|
[16] |
|
[17] |
武建国, 石凯, 刘健, 等. 6000m AUV“潜龙一号”浮力调节系统开发及试验研究[J]. 海洋技术学报, 2014, 33(5):1-7.
|
|
|
[18] |
|
[19] |
|
[20] |
朱伟达. 基于改进型人工势场法的车辆避障路径规划研究[D]. 镇江: 江苏大学, 2017.
|
|
|
[21] |
翟丽, 张雪莹, 张闲, 等. 基于势场法的无人车局部动态避障路径规划算法[J]. 北京理工大学学报, 2022, 42(7):696-705.
|
|
[1] | XIAN Sujie, WANG Kang, ZENG Xin, SONG Jie, WU Zhilin. An Impact Angle and Field of View Constraints Guidance Law Based on Deep Reinforcement Learning [J]. Acta Armamentarii, 2025, 46(4): 240435-. |
[2] | WANG Haoning, GUO Jie, WAN Yangyang, ZHANG Baochao, TANG Shengjing, LI Xiang. Formation Control of Hypersonic Glide Vehicles Considering Position Adjustment in Launch Direction [J]. Acta Armamentarii, 2025, 46(4): 240410-. |
[3] | LI Yaxuan, LIU Xinfu. Real-time Trajectory Planning for Fixed-wing UAVs Based on Exact Convex Relaxation [J]. Acta Armamentarii, 2025, 46(3): 240362-. |
[4] | LI Chuanhao, MING Zhenjun, WANG Guoxin, YAN Yan, DING Wei, WAN Silai, DING Tao. Dynamic Decision-making Method of Unmanned Platform Chaff Jamming for Terminal Defense Based on Multi-agent Deep Reinforcement Learning [J]. Acta Armamentarii, 2025, 46(3): 240251-. |
[5] | ZHANG Wang, SHAO Xuehui, TANG Huilong, WEI Jianlin, WANG Wei. A Reinforcement Learning-based Radar Jamming Decision-making Method with Adaptive Setting of Exploration Rate [J]. Acta Armamentarii, 2025, 46(3): 240357-. |
[6] | XIAO Liujun, LI Yaxuan, LIU Xinfu. Adaptive Terminal Guidance for Hypersonic Gliding Vehicles Using Reinforcement Learning [J]. Acta Armamentarii, 2025, 46(2): 240222-. |
[7] | LI Zonggang, HAN Sen, CHEN Yinjuan, NING Xiaogang. A Path Planning Algorithm for Mobile Robots Based on Angle Searching and Deep Q-Network [J]. Acta Armamentarii, 2025, 46(2): 240265-. |
[8] | LI Shiying, DING Yinghe, SUN Haiwen, XU Zheng, LI Ye, TANG Enbo. Consensus Model and Collaborative Control Method of Large-scale Unmanned Cluster [J]. Acta Armamentarii, 2024, 45(S2): 113-122. |
[9] | HU Mingzhe, LI Xuguang, REN Zhiying, ZENG Shuai. UAV 3D Path Planning Based on A* Algorithm with Improved Heuristic Function [J]. Acta Armamentarii, 2024, 45(S1): 302-307. |
[10] | HU Yanyang, HE Fan, BAI Chengchao. Cooperative Obstacle Avoidance Decision Method for the Terminal Guidance Phase of Hypersonic Vehicles [J]. Acta Armamentarii, 2024, 45(9): 3147-3160. |
[11] | SUN Hao, LI Haiqing, LIANG Yan, MA Chaoxiong, WU Han. Dynamic Penetration Decision of Loitering Munition Group Based on Knowledge-assisted Reinforcement Learning [J]. Acta Armamentarii, 2024, 45(9): 3161-3176. |
[12] | NIU Yilong, YANG Yi, ZHANG Kai, MU Ying, WANG Qi, WANG Yingmin. Path Planning Method for Unmanned Surface Vessel in On-call Submarine Search Based on Improved DQN Algorithm [J]. Acta Armamentarii, 2024, 45(9): 3204-3215. |
[13] | CHEN Wenjie, CUI Xiaohong, WANG Binrui. Safety Optimal Tracking Control Algorithm and Robot Arm Simulation [J]. Acta Armamentarii, 2024, 45(8): 2688-2697. |
[14] | ZHOU Guohua, LI Linfeng, WU Kena, LIU Yuelin, XIA Shuai. Numerical Simulation of Magnetic Interference Parameter Identification of AUV Based on L-SHADE Agorithm [J]. Acta Armamentarii, 2024, 45(8): 2678-2687. |
[15] | JI Peng, GUO Minghao. Local Path Planning for Unmanned Ground Vehicles Based on Improved Artificial Potential Field Method in Frenet Coordinate System [J]. Acta Armamentarii, 2024, 45(7): 2097-2109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||