Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (7): 2097-2109.doi: 10.12382/bgxb.2023.0305
Previous Articles Next Articles
Received:
2023-04-04
Online:
2023-08-03
Contact:
JI Peng
CLC Number:
JI Peng, GUO Minghao. Local Path Planning for Unmanned Ground Vehicles Based on Improved Artificial Potential Field Method in Frenet Coordinate System[J]. Acta Armamentarii, 2024, 45(7): 2097-2109.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Description of path diagram in Cartesian coordinate system(Left:the depiction of vehicle trajectory on the roadway; Right:the actual mapping of vehicle trajectory in Cartesian coordinate system)
Fig.3 Description of path diagram in Frenet coordinate system(Left: the depiction of vehicle trajectory on the roadway; Right: the actual mapping of vehicle trajectory in Frenet coordinate system)
参数 | 含义 |
---|---|
rh/m | 车辆的位置矢量 |
vh/(m·s-1) | 车辆的速度矢量 |
ah/(m·s-2) | 车辆的加速度矢量 |
kh/m-1 | 车的位置在车轨迹上的曲率 |
τh | 车轨迹切线上的单位向量 |
nh | 车轨迹法线上的单位向量 |
Table 1 The parameters and meanings of Cartesian coordinate system
参数 | 含义 |
---|---|
rh/m | 车辆的位置矢量 |
vh/(m·s-1) | 车辆的速度矢量 |
ah/(m·s-2) | 车辆的加速度矢量 |
kh/m-1 | 车的位置在车轨迹上的曲率 |
τh | 车轨迹切线上的单位向量 |
nh | 车轨迹法线上的单位向量 |
参数 | 含义 |
---|---|
rr/m | 车辆投影的位置矢量 |
/(m·s-1) | 纵向速度 |
/(m·s-2) | 纵向加速度 |
kr/m-1 | 投影的位置矢量在道路几何上的曲率 |
/(m·s-1) | 横向速度 |
/(m·s-2) | 横向加速度 |
τr | 投影在道路几何上切线的单位向量 |
nr | 投影在道路几何上法线的单位向量 |
l' | 横向位移对弧长的1阶导数 |
l″ | 横向位移对弧长的2阶导数 |
Table 2 The parameters and meanings of Frenet coordinate system
参数 | 含义 |
---|---|
rr/m | 车辆投影的位置矢量 |
/(m·s-1) | 纵向速度 |
/(m·s-2) | 纵向加速度 |
kr/m-1 | 投影的位置矢量在道路几何上的曲率 |
/(m·s-1) | 横向速度 |
/(m·s-2) | 横向加速度 |
τr | 投影在道路几何上切线的单位向量 |
nr | 投影在道路几何上法线的单位向量 |
l' | 横向位移对弧长的1阶导数 |
l″ | 横向位移对弧长的2阶导数 |
参数 | 传统人工 势场法 | 文献[ | 本文改进 人工势场法 |
---|---|---|---|
步数 | - | 71 | 62 |
路径长/m | - | 7.1 | 5.6 |
时间/s | - | 0.1114 | 0.036 |
Table 3 Comparison of U-shaped obstacle algorithms
参数 | 传统人工 势场法 | 文献[ | 本文改进 人工势场法 |
---|---|---|---|
步数 | - | 71 | 62 |
路径长/m | - | 7.1 | 5.6 |
时间/s | - | 0.1114 | 0.036 |
算法 | 仿真时间/s | 仿真步长 | 路径长度/m |
---|---|---|---|
RRT算法 | 0.92 | 0.5 | 1652 |
传统人工势场法 | 0.40 | 0.5 | |
改进人工势场法 | 0.47 | 0.5 | 1476 |
Table 4 Comparison of algorithm simulation data
算法 | 仿真时间/s | 仿真步长 | 路径长度/m |
---|---|---|---|
RRT算法 | 0.92 | 0.5 | 1652 |
传统人工势场法 | 0.40 | 0.5 | |
改进人工势场法 | 0.47 | 0.5 | 1476 |
Fig.18 Moving trajectory during static obstacle avoidance(Left:preparing for obstacle avoidance; Middle:avoiding obstacles; Right:obstacle avoidance completed)
Fig.20 Moving trajectory during dynamic obstacle avoidance(Left:preparing for obstacle avoidance; Middle:Avoiding obstacles; Right:obstacle avoidance completed)
Fig.22 Simulation process of avoiding U-shaped obstacles (Left:preparing for obstacle avoidance;Middle:avoiding obstacles; Right:obstacle avoidance completed)
Fig.23 Simulation process of avoiding dynamic obstacles (Left:preparing for obstacle avoidance;Middle:avoiding obstacles; Right:obstacle avoidance completed)
Fig.24 Simulation process of avoiding dynamic obstacles under large curvature(Left:preparing for obstacle avoidance; Middle:avoiding obstacles; Right:obstacle avoidance completed)
[1] |
翟丽, 张雪莹, 张闲, 等. 基于势场法的无人车局部动态避障路径规划算法[J]. 北京理工大学学报, 2022, 42(7):696-705.
|
|
|
[2] |
牛秦玉, 李美凡, 赵勇. 改进人工势场法的AGV路径规划算法研究[J]. 机床与液压, 2022, 50(17):19-24.
doi: 10.3969/j.issn.1001-3881.2022.17.004 |
|
|
[3] |
|
[4] |
修彩靖, 陈慧. 基于改进人工势场法的无人驾驶车辆局部路径规划的研究[J]. 汽车工程, 2013, 35(9):808-811.
|
|
|
[5] |
陈相茹. 基于人工势场理论的车辆行驶路径建模研究[D]. 长春: 吉林大学, 2020.
|
|
|
[6] |
李二超, 王玉华. 改进人工势场法的移动机器人避障轨迹研究[J]. 计算机工程与应用, 2022, 58(6):296-304.
doi: 10.3778/j.issn.1002-8331.2108-0122 |
|
|
[7] |
孙鹏耀, 黄炎焱, 潘尧. 基于改进势场法的移动机器人路径规划[J]. 兵工学报, 2020, 41(10):2106-2121.
doi: 10.3969/j.issn.1000-1093.2020.10.021 |
|
|
[8] |
|
[9] |
王沙晶, 陈建业. 基于Frenet坐标系的智能车运动规划研究[J]. 移动电源与车辆, 2019, 195(1):22-29.
|
|
|
[10] |
魏民祥, 滕德成, 吴树凡. 基于Frenet坐标系的自动驾驶轨迹规划与优化算法[J]. 控制与决策, 2021, 36(4):815-824.
|
|
|
[11] |
刘冰雁, 叶雄兵, 方胜良, 等. 基于Frenet和改进人工势场的在轨规避路径自主规划[J]. 北京航空航天大学学报, 2021, 47(4):731-741.
|
|
|
[12] |
王威, 陈慧岩, 马建昊, 等. 基于Frenet坐标系和控制延时补偿的智能车辆路径跟踪[J]. 兵工学报, 2019, 40(11):2336-2351.
doi: 10.3969/j.issn.1000-1093.2019.11.019 |
doi: 10.3969/j.issn.1000-1093.2019.11.019 |
|
[13] |
袁春, 龚城, 何成诚, 等. Frenet坐标系及凸近似避障原理的无人车局部路径规划[J]. 重庆理工大学学报(自然科学), 2022, 36(4):59-67.
|
|
|
[14] |
李萌. 基于Frenet坐标系的智能车辆多场景轨迹规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
|
|
[15] |
|
[16] |
陈天德, 黄炎焱, 沈炜. 基于虚拟障碍物法的无震荡航路规划[J]. 兵工学报, 2019, 40(3):651-658.
doi: 10.3969/j.issn.1000-1093.2019.03.025 |
|
|
[17] |
韩宇洪. 基于改进人工势场法的无人车避障路径规划研究[D]. 重庆: 重庆理工大学, 2020.
|
|
|
[18] |
朱伟达. 基于改进型人工势场法的车辆避障路径规划研究[D]. 镇江: 江苏大学, 2017.
|
|
|
[19] |
范世鹏, 祁琪, 路坤锋, 等. 基于改进人工势场法的巡航导弹自主避障技术[J]. 北京理工大学学报, 2018, 38(8):828-834.
|
|
|
[20] |
|
[1] | FANG Qiuyu, ZHANG Yunlin, MA Zhuangzhuang, SHAO Jinliang. Control Barrier Functions-based Trajectory Planning for Unmanned Ground Vehicles in Unknown Environment [J]. Acta Armamentarii, 2023, 44(S2): 90-102. |
[2] | ZHAO Xijun, CUI Xing, LI Zhaodong, WANG Yiquan, YANG Yu. Adaptive Inter-vechile Distance Control for Unmanned Ground Vehicle Convoy [J]. Acta Armamentarii, 2023, 44(S2): 44-51. |
[3] | LI Zhaodong, ZHAO Xijun, YANG Tingting, QI Xiaolong, ZHOU Changyi, ZHANG Liming. Key Technologies and Application Prospects for High-definition Map in Off-road Environments [J]. Acta Armamentarii, 2023, 44(S2): 1-11. |
[4] | XIONG Guangming, YU Quanfu, HU Xiuzhong, ZHOU Zijie, XU Jiahui. A Motion Planner for Unmanned Tracked Vehicles in Multi-storey Buildings Considering the Characteristics of Vehicles [J]. Acta Armamentarii, 2023, 44(3): 841-850. |
[5] | PAN Bo, LI Shengfei, WANG Yang, TAN Senqi, ZHANG Naisi, LUO Tian, CUI Xing. Integrated Control Method of Multi-axle Distributed Driving Unmanned Ground Vehicle in Handling Limit [J]. Acta Armamentarii, 2023, 44(11): 3279-3294. |
[6] | GUAN Haijie, WANG Boyang, WANG Xurui, LIU Hai’ou, CHEN Huiyan. A Review on the Development of Military Unmanned Ground System with Mission Payload [J]. Acta Armamentarii, 2023, 44(11): 3333-3344. |
[7] | SUN Yang, CHEN Hui-yan. Research on Test and Evaluation of Unmanned Ground Vehicles [J]. Acta Armamentarii, 2015, 36(6): 978-986. |
[8] | CHEN Hui-yan, ZHANG Yu. An Overview of Research on Military Unmanned Ground Vehicles [J]. Acta Armamentarii, 2014, 35(10): 1696-1706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||