Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (2): 545-555.doi: 10.12382/bgxb.2021.0620
Previous Articles Next Articles
WANG Yang, FENG Yongxin*(), SONG Bixue, TIAN Binghe
Received:
2021-09-13
Online:
2022-06-11
Contact:
FENG Yongxin
CLC Number:
WANG Yang, FENG Yongxin, SONG Bixue, TIAN Binghe. A Modulation Recognition Algorithm of DP-DRCnet Convolutional Neural Network[J]. Acta Armamentarii, 2023, 44(2): 545-555.
Add to citation manager EndNote|Ris|BibTeX
层名称 | 输入数据维度 | 填充维度 | 步长 | 卷积核维度 | 通道数 |
---|---|---|---|---|---|
convu1 | 2×128 | 0×0 | 1×1 | 2×1 | 32 |
avgu1 | 1×126 | 32 | |||
convu2 | 2×32 | 0×0 | 1×1 | 2×1 | 32 |
avgu2 | 1×31 | 32 | |||
convd1 | 2×128 | 0×0 | 1×1 | 1×3 | 32 |
avgd1 | 2×124 | 32 | |||
convd2 | 2×32 | 0×0 | 1×1 | 1×3 | 32 |
avgd2 | 2×29 | 32 | |||
pla | 2×16 | 64 | |||
fcmain | 1024 |
Table 1 Model parameters of DP-DRCnet(2,2,32)
层名称 | 输入数据维度 | 填充维度 | 步长 | 卷积核维度 | 通道数 |
---|---|---|---|---|---|
convu1 | 2×128 | 0×0 | 1×1 | 2×1 | 32 |
avgu1 | 1×126 | 32 | |||
convu2 | 2×32 | 0×0 | 1×1 | 2×1 | 32 |
avgu2 | 1×31 | 32 | |||
convd1 | 2×128 | 0×0 | 1×1 | 1×3 | 32 |
avgd1 | 2×124 | 32 | |||
convd2 | 2×32 | 0×0 | 1×1 | 1×3 | 32 |
avgd2 | 2×29 | 32 | |||
pla | 2×16 | 64 | |||
fcmain | 1024 |
层名称 | 输入数据维度 | 填充维度 | 步长 | 卷积核维度 |
---|---|---|---|---|
convu1 | 2×128 | 0×0 | 1×1 | 1×3 |
avgu1 | 2×124 | |||
convu2 | 2×32 | 0×0 | 1×1 | 1×3 |
avgu2 | 2×29 | |||
convd1 | 2×128 | 0×0 | 1×1 | 1×3 |
avgd1 | 2×124 | |||
convd2 | 2×32 | 0×0 | 1×1 | 1×3 |
avgd2 | 2×29 | |||
pla | 2×16 | |||
fcmain | 1024 |
Table 2 Model parameters of DP-DRCnetd(2,2,32)
层名称 | 输入数据维度 | 填充维度 | 步长 | 卷积核维度 |
---|---|---|---|---|
convu1 | 2×128 | 0×0 | 1×1 | 1×3 |
avgu1 | 2×124 | |||
convu2 | 2×32 | 0×0 | 1×1 | 1×3 |
avgu2 | 2×29 | |||
convd1 | 2×128 | 0×0 | 1×1 | 1×3 |
avgd1 | 2×124 | |||
convd2 | 2×32 | 0×0 | 1×1 | 1×3 |
avgd2 | 2×29 | |||
pla | 2×16 | |||
fcmain | 1024 |
层名称 | 输入数据维度 | 填充维度 | 步长 | 卷积核维度 |
---|---|---|---|---|
convu1 | 2×128 | 0×0 | 1×1 | 2×1 |
avgu1 | 1×126 | |||
convu2 | 2×32 | 0×0 | 1×1 | 2×1 |
avgu2 | 1×31 | |||
convd1 | 2×128 | 0×0 | 1×1 | 2×1 |
avgd1 | 1×126 | |||
convd2 | 2×32 | 0×0 | 1×1 | 2×1 |
avgd2 | 1×31 | |||
pla | 2×16 | |||
fcmain | 1024 |
Table 3 Model parameters of DP- DRCnetu(2,2,32)
层名称 | 输入数据维度 | 填充维度 | 步长 | 卷积核维度 |
---|---|---|---|---|
convu1 | 2×128 | 0×0 | 1×1 | 2×1 |
avgu1 | 1×126 | |||
convu2 | 2×32 | 0×0 | 1×1 | 2×1 |
avgu2 | 1×31 | |||
convd1 | 2×128 | 0×0 | 1×1 | 2×1 |
avgd1 | 1×126 | |||
convd2 | 2×32 | 0×0 | 1×1 | 2×1 |
avgd2 | 1×31 | |||
pla | 2×16 | |||
fcmain | 1024 |
网络名称 | 卷积 层数 | 卷积核维度 | LSTM 层数 | 全连接 层数 | 通道数 |
---|---|---|---|---|---|
CLDNN | 3 | 1×8 | 1 | 32/64/128 | |
CNN_LSTM | 2 | 1×3,2×3 | 1 | 64/128 | |
IQCNet | 5 | 2×1,1×3 | 1 | 32 |
Table 4 Model parameters of the network for comparison
网络名称 | 卷积 层数 | 卷积核维度 | LSTM 层数 | 全连接 层数 | 通道数 |
---|---|---|---|---|---|
CLDNN | 3 | 1×8 | 1 | 32/64/128 | |
CNN_LSTM | 2 | 1×3,2×3 | 1 | 64/128 | |
IQCNet | 5 | 2×1,1×3 | 1 | 32 |
网络名称 | -6~ 0/dB | 2~ 6/dB | 8~ 12/dB | 平均识 别率 |
---|---|---|---|---|
DP-DRCnet(2,2,32) | 69.24 | 82.91 | 87.68 | 79.94 |
DP-DRCnet(3,3,32) | 73.3 | 88.45 | 91.55 | 84.43 |
DP-DRCnet(4,4,32) | 76.59 | 90.2 | 92.71 | 86.5 |
DP-DRCnetu(2,2,32) | 62.26 | 74.12 | 75.62 | 70.67 |
DP- DRCnetu(3,3,32) | 69.09 | 83.67 | 87.76 | 80.17 |
DP- DRCnetu(4,4,32) | 73.95 | 84.79 | 87.3 | 82.01 |
DP- DRCnetd(2,2,32) | 66.95 | 83.7 | 85.06 | 78.57 |
DP- DRCnetd(3,3,32) | 68.56 | 85.88 | 89.39 | 81.28 |
DP- DRCnetd(4,4,32) | 67.05 | 85.64 | 88.62 | 80.44 |
Table 5 Comparison of recognition rate%
网络名称 | -6~ 0/dB | 2~ 6/dB | 8~ 12/dB | 平均识 别率 |
---|---|---|---|---|
DP-DRCnet(2,2,32) | 69.24 | 82.91 | 87.68 | 79.94 |
DP-DRCnet(3,3,32) | 73.3 | 88.45 | 91.55 | 84.43 |
DP-DRCnet(4,4,32) | 76.59 | 90.2 | 92.71 | 86.5 |
DP-DRCnetu(2,2,32) | 62.26 | 74.12 | 75.62 | 70.67 |
DP- DRCnetu(3,3,32) | 69.09 | 83.67 | 87.76 | 80.17 |
DP- DRCnetu(4,4,32) | 73.95 | 84.79 | 87.3 | 82.01 |
DP- DRCnetd(2,2,32) | 66.95 | 83.7 | 85.06 | 78.57 |
DP- DRCnetd(3,3,32) | 68.56 | 85.88 | 89.39 | 81.28 |
DP- DRCnetd(4,4,32) | 67.05 | 85.64 | 88.62 | 80.44 |
网络名称 | -6~ 0/dB | 2~ 6/dB | 8~ 12/dB | 平均识 别率 |
---|---|---|---|---|
DP-DRCnet(4,4,32) | 76.59 | 90.2 | 92.71 | 86.5 |
CLDNN | 65.95 | 82.82 | 84.67 | 77.81 |
CNN_LSTM | 71.87 | 86.07 | 88.48 | 82.14 |
IQCnet(5,32) | 68.01 | 87.65 | 88.62 | 81.4 |
Table 6 Comparison of recognition rate%
网络名称 | -6~ 0/dB | 2~ 6/dB | 8~ 12/dB | 平均识 别率 |
---|---|---|---|---|
DP-DRCnet(4,4,32) | 76.59 | 90.2 | 92.71 | 86.5 |
CLDNN | 65.95 | 82.82 | 84.67 | 77.81 |
CNN_LSTM | 71.87 | 86.07 | 88.48 | 82.14 |
IQCnet(5,32) | 68.01 | 87.65 | 88.62 | 81.4 |
对比参数 | CLDNN | CNN_LSTM | IQCNet(5,24) | DP-DRCnet(4,4,32) |
---|---|---|---|---|
网络参数量 | 9.81×104 | 7.8×105 | 2.39×104 | 1.9×104 |
单样本计算量 | 1.88×107 | 9.15×106 | 1.57×106 | 5.09×105 |
训练时间/测试时间 | 3121/867 | 1209/410 | 156/87 | 97/42 |
Table 7 Network parameters and computational load
对比参数 | CLDNN | CNN_LSTM | IQCNet(5,24) | DP-DRCnet(4,4,32) |
---|---|---|---|---|
网络参数量 | 9.81×104 | 7.8×105 | 2.39×104 | 1.9×104 |
单样本计算量 | 1.88×107 | 9.15×106 | 1.57×106 | 5.09×105 |
训练时间/测试时间 | 3121/867 | 1209/410 | 156/87 | 97/42 |
[1] |
赫彬, 苏洪涛. 认知雷达抗干扰中的博弈论分析综述[J]. 电子与信息学报, 2021, 43(5):1199-1211.
|
|
|
[2] |
doi: 10.1049/ell2.v52.21 URL |
[3] |
doi: 10.1109/TWC.2011.030311.101490 URL |
[4] |
张笑宇, 冯永新, 钱博. 一种分数域数字信号调制方式识别方法[J]. 弹箭与制导学报, 2021, 41(1):13-17.
|
|
|
[5] |
|
[6] |
doi: 10.1109/Access.6287639 URL |
[7] |
doi: 10.1109/TNNLS.2021.3085433 URL |
[8] |
|
[9] |
张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020, 403(11):16-25.
|
|
|
[10] |
刘明骞, 郑诗斐, 李兵兵. 基于深度学习的MPSK信号调制识别[J]. 国防科技大学学报, 2019, 41(5):153-158.
|
|
|
[11] |
|
[12] |
|
[13] |
doi: 10.1109/Access.6287639 URL |
[14] |
张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42(9):2208-2215.
|
|
|
[15] |
江伟华, 童峰, 王彬, 等. 采用主分量分析的非合作水声通信信号调制识别[J]. 兵工学报, 2016, 37(9):1670-1676.
doi: 10.3969/j.issn.1000-1093.2016.09.017 |
|
|
[16] |
安泽亮, 张天骐, 马宝泽, 等. 基于一维CNN的多入多出OSTBC信号协作调制识别[J]. 通信学报, 2021, 42(7):84-94.
doi: 10.11959/j.issn.1000-436x.2021142 |
doi: 10.11959/j.issn.1000-436x.2021142 |
|
[17] |
|
[18] |
崔天舒, 崔凯, 黄永辉, 等. 卷积神经网络卫星信号自动调制识别算法[J]. 北京航空航天大学学报, 2022, 48(6):986-994.
|
|
|
[19] |
|
[20] |
|
[21] |
|
[1] | TIAN Daming, MIAO Pu. Visible Light Communication Nonlinear Equalizer Based on Model Solving and Deep Learning [J]. Acta Armamentarii, 2024, 45(2): 466-473. |
[2] | ZHANG Kun, DU Ruiyi, SHI Haotian, HUA Shuai. Prediction of Aircraft Trajectory Based on Mogrifier-BiGRU [J]. Acta Armamentarii, 2024, 45(2): 373-384. |
[3] | YANG Jiaming, PAN Yue, WANG Qiang, CAO Huaigang, GAO Sunpei. Research on Deep Learning Method of Underwater Weak Target Tracking [J]. Acta Armamentarii, 2024, 45(2): 385-394. |
[4] | QIN Haolin, XU Tingfa, LI Jianan. Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure [J]. Acta Armamentarii, 2023, 44(9): 2639-2649. |
[5] | PENG Peiran, REN Shubo, LI Jianan, ZHOU Hongwei, XU Tingfa. Illumination-aware Multispectral Fusion Network for Pedestrian Detection [J]. Acta Armamentarii, 2023, 44(9): 2622-2630. |
[6] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[7] | WANG Jian, ZHANG Bangning, ZHANG Jie, WEI Guofeng, GUO Daoxing. A Method for Specific Communication Emitter Identification Based on Multi-Domain Feature Fusion [J]. Acta Armamentarii, 2023, 44(4): 949-959. |
[8] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
[9] | WANG Qiang, WU Letian, LI Hong, WANG Yong, WANG Huan, YANG Wankou. An Infrared Small Target Detection Method via Dual Network Collaboration [J]. Acta Armamentarii, 2023, 44(10): 3165-3176. |
[10] | PANG Yiqiong, XU Hua, ZHANG Yue, ZHU Huali, PENG Xiang. Modulation Recognition Algorithm Based on Transfer Meta-Learning [J]. Acta Armamentarii, 2023, 44(10): 2954-2963. |
[11] | ZHENG Zhiwei, GUAN Xueyuan, FU Jian, MA Xunqiong, YIN Shang. Projectile Trajectory Prediction Based on CNN-LSTM Model [J]. Acta Armamentarii, 2023, 44(10): 2975-2983. |
[12] | WANG Liang, CHEN Jianhua, LI Ye. A Target Identification Technique for Unmanned Surface Vessel Based on Deep Learning [J]. Acta Armamentarii, 2022, 43(S2): 13-19. |
[13] | LI Heng, YE Zukun, ZHA Wenbin, WANG Yulin. Tool Wear Online Monitoring Based on Multi-sensor Information Decision-making Level Fusion [J]. Acta Armamentarii, 2021, 42(9): 2024-2031. |
[14] | WANG Cheng, WU Yan, YANG Tingfei. Improving the Detection Accuracy of Wake Targets by Improved One-class Support Vector Machine [J]. Acta Armamentarii, 2020, 41(9): 1887-1893. |
[15] | YU Yongwei, PENG Xi, DU Liuqing, CHEN Tianhao. Real-time Detection of Parts by Assembly Robot Based on Deep Learning Framework [J]. Acta Armamentarii, 2020, 41(10): 2122-2130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||