Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (10): 2954-2963.doi: 10.12382/bgxb.2022.0583
Previous Articles Next Articles
PANG Yiqiong, XU Hua*(), ZHANG Yue, ZHU Huali, PENG Xiang
Received:
2022-06-30
Online:
2023-10-30
Contact:
XU Hua
CLC Number:
PANG Yiqiong, XU Hua, ZHANG Yue, ZHU Huali, PENG Xiang. Modulation Recognition Algorithm Based on Transfer Meta-Learning[J]. Acta Armamentarii, 2023, 44(10): 2954-2963.
Add to citation manager EndNote|Ris|BibTeX
训练集、验证集与测试剂 | 信号调制样式 |
---|---|
训练集 | OOK、8ASK、QPSK、16PSK、16APSK、64APSK、16QAM、64QAM、256QAM、AM-SSB-SC |
验证集 | 128QAM、AM-SSB-WC、FM、OQPSK、GMSK、128APSK、BPSK |
测试集 | 4ASK、8PSK、32PSK、32APSK、32QAM、AM-DSB-SC、AM-DSB-WC |
Table 1 Sample dataset
训练集、验证集与测试剂 | 信号调制样式 |
---|---|
训练集 | OOK、8ASK、QPSK、16PSK、16APSK、64APSK、16QAM、64QAM、256QAM、AM-SSB-SC |
验证集 | 128QAM、AM-SSB-WC、FM、OQPSK、GMSK、128APSK、BPSK |
测试集 | 4ASK、8PSK、32PSK、32APSK、32QAM、AM-DSB-SC、AM-DSB-WC |
方法 | 特征提取 网络 | 5-way | ||
---|---|---|---|---|
1-shot | 5-shot | 20-shot | ||
MAML | ConvNet | 50.44±0.84 | 69.62±0.71 | 79.05±0.86 |
ResNet | 27.69±0.45 | 40.45±0.78 | 41.53±0.57 | |
MAML+迁移预训练 | ConvNet | 47.32±0.42 | 68.21±0.65 | 77.92±0.51 |
ResNet | 82.44±0.74 | 91.26±0.5 | 92.74±0.47 | |
MAML+迁移预训练+[ψ1,ψ2](本文算法) | ConvNet | 48.56±0.34 | 70.38±0.24 | 79.82±0.28 |
ResNet | 85.1±0.72 | 93.5±0.49 | 95.88±0.36 |
Table 2 Comparison of ablation results%
方法 | 特征提取 网络 | 5-way | ||
---|---|---|---|---|
1-shot | 5-shot | 20-shot | ||
MAML | ConvNet | 50.44±0.84 | 69.62±0.71 | 79.05±0.86 |
ResNet | 27.69±0.45 | 40.45±0.78 | 41.53±0.57 | |
MAML+迁移预训练 | ConvNet | 47.32±0.42 | 68.21±0.65 | 77.92±0.51 |
ResNet | 82.44±0.74 | 91.26±0.5 | 92.74±0.47 | |
MAML+迁移预训练+[ψ1,ψ2](本文算法) | ConvNet | 48.56±0.34 | 70.38±0.24 | 79.82±0.28 |
ResNet | 85.1±0.72 | 93.5±0.49 | 95.88±0.36 |
元学习算法 | 特征提取 网络 | 5-way 5-shot | 5-way 1-shot |
---|---|---|---|
PN算法 | ConvNet | 69.16±0.34 | 62.93±0.56 |
ResNet | 84.89±0.28 | 74.34±0.38 | |
RN算法 | ConvNet | 70.73±0.42 | 64.03±0.57 |
ResNet | 85.52±0.75 | 75.53±0.68 | |
MN算法 | ConvNet | 63.34±0.23 | 58.34±0.26 |
ResNet | 75.02±0.42 | 69.93±0.45 | |
SN算法 | ConvNet | 60.34±0.52 | 43.52±0.74 |
ResNet | 67.32±0.56 | 55.43±0.46 | |
Meta-learner LSTM算法 | ConvNet | 62.34±0.62 | 54.37±0.53 |
ResNet | 72.36±0.43 | 63.33±0.52 | |
本文算法 | ConvNet | 68.23±0.54 | 55.32±0.39 |
ResNet | 93.5±0.49 | 85.1±0.72 |
Table 3 Performance comparison of different meta-learning algorithms%
元学习算法 | 特征提取 网络 | 5-way 5-shot | 5-way 1-shot |
---|---|---|---|
PN算法 | ConvNet | 69.16±0.34 | 62.93±0.56 |
ResNet | 84.89±0.28 | 74.34±0.38 | |
RN算法 | ConvNet | 70.73±0.42 | 64.03±0.57 |
ResNet | 85.52±0.75 | 75.53±0.68 | |
MN算法 | ConvNet | 63.34±0.23 | 58.34±0.26 |
ResNet | 75.02±0.42 | 69.93±0.45 | |
SN算法 | ConvNet | 60.34±0.52 | 43.52±0.74 |
ResNet | 67.32±0.56 | 55.43±0.46 | |
Meta-learner LSTM算法 | ConvNet | 62.34±0.62 | 54.37±0.53 |
ResNet | 72.36±0.43 | 63.33±0.52 | |
本文算法 | ConvNet | 68.23±0.54 | 55.32±0.39 |
ResNet | 93.5±0.49 | 85.1±0.72 |
[1] |
赵雄文, 郭春霞, 李景春. 基于高阶累积量和循环谱的信号调制方式混合识别算法[J]. 电子与信息学报, 2016, 38(3): 674-680.
|
|
|
[2] |
李东瑾, 杨瑞娟, 董睿杰. 基于联合投影字典学习的辐射源调制识别[J]. 兵工学报, 2020, 41(7): 1464-1472.
doi: 10.3969/j.issn.1000-1093.2020.07.026 |
doi: 10.3969/j.issn.1000-1093.2020.07.026 |
|
[3] |
江伟华, 童峰, 王彬, 等. 采用主分量分析的非合作水声通信信号调制识别[J]. 兵工学报, 2016, 37(9): 1670-1676.
doi: 10.3969/j.issn.1000-1093.2016.09.017 |
|
|
[4] |
|
[5] |
doi: 10.1109/JSTSP.2018.2797022 URL |
[6] |
doi: 10.1109/COML.4234 URL |
[7] |
doi: 10.3390/s21051577 URL |
[8] |
王洋, 冯永新, 宋碧雪, 等. DP-DRCnet卷积神经网络信号调制识别算法[J]. 兵工学报, 2023, 44(2): 545-555.
doi: 10.12382/bgxb.2021.0620 |
doi: 10.12382/bgxb.2021.0620 |
|
[9] |
doi: 10.1109/PROC.5 URL |
[10] |
doi: 10.1007/s11276-018-1667-6 |
[11] |
doi: 10.1109/LSP.97 URL |
[12] |
doi: 10.1109/LCOMM.2021.3093485 URL |
[13] |
doi: 10.1007/s10462-020-09852-3 |
[14] |
李凡长, 刘洋, 吴鹏翔, 等. 元学习研究综述[J]. 计算机学报, 2021, 44(2): 422-446.
|
|
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
朱克凡, 王杰贵, 刘有军. 小样本条件下基于数据增强和WACGAN的雷达目标识别算法[J]. 电子学报, 2020, 48(6): 1124-1131.
doi: 10.3969/j.issn.0372-2112.2020.06.012 |
|
[1] | ZHANG Kaige, LU Zhigang, NIE Tianchang, LI Zhiwei, GUO Yuqiang. Analysis of Soft Intelligent Edge Computing Technologies for Unmanned Systems [J]. Acta Armamentarii, 2023, 44(9): 2611-2621. |
[2] | LIU Chang, LEI Hongbo, LIN Shiyao, FAN Shipeng, WANG Jiang. Firing Data Calculation Method for Laser Terminal Guidance Projectile Based on Multi-model Network [J]. Acta Armamentarii, 2023, 44(9): 2745-2755. |
[3] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[4] | WANG Yang, FENG Yongxin, SONG Bixue, TIAN Binghe. A Modulation Recognition Algorithm of DP-DRCnet Convolutional Neural Network [J]. Acta Armamentarii, 2023, 44(2): 545-555. |
[5] | HUANG Wenkuan, QIAN Linfang, YIN Qiang, LIU Taisu. Fault Diagnosis Method of Modular Charge Feeding Mechanism Based on Transfer Learning [J]. Acta Armamentarii, 2023, 44(10): 2964-2974. |
[6] | JIANG Wei-hua, TONG Feng, WANG Bin, LIU Shi-gang. Modulation Recognition Method of Non-cooperation Underwater Acoustic Communication Signals Using Principal ComponentAnalysis [J]. Acta Armamentarii, 2016, 37(9): 1670-1676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||