Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (10): 2975-2983.doi: 10.12382/bgxb.2022.0511
Previous Articles Next Articles
ZHENG Zhiwei1, GUAN Xueyuan1,*(), FU Jian2, MA Xunqiong3, YIN Shang3
Received:
2022-06-10
Online:
2023-10-30
Contact:
GUAN Xueyuan
CLC Number:
ZHENG Zhiwei, GUAN Xueyuan, FU Jian, MA Xunqiong, YIN Shang. Projectile Trajectory Prediction Based on CNN-LSTM Model[J]. Acta Armamentarii, 2023, 44(10): 2975-2983.
Add to citation manager EndNote|Ris|BibTeX
参数 | 采样值 | 采样间隔 |
---|---|---|
发射角/(°) | [20,66] | 2 |
初始速度/(m·s-1) | [600,900] | 10 |
Table 1 Sampling parameters of projectile trajectory
参数 | 采样值 | 采样间隔 |
---|---|---|
发射角/(°) | [20,66] | 2 |
初始速度/(m·s-1) | [600,900] | 10 |
层定义 | 层参数 | 层输入、输出尺寸 |
---|---|---|
1Dconv层1 | 卷积核数量10,长度2 | 输入:(None,10,4) |
输出:(None,9,10) | ||
最大池化层1 | 池化窗口长度2 | 输入:(None,9,10) |
输出:(None,4,10) | ||
1Dconv层2 | 卷积核数量10,长度2 | 输入:(None,4,10) |
输出:(None,3,10) | ||
最大池化层2 | 池化窗口长度2 | 输入:(None,3,10) |
输出:(None,1,10) | ||
LSTM层1 | 神经元数量30 | 输入:(None,1,10) |
输出:(None,1,30) | ||
Dropout层1 | dropout率0.2 | 输入:(None,1,30) |
输出:(None,1,30) | ||
LSTM层2 | 神经元数量30 | 输入:(None,1,30) |
输出:(None,30) | ||
Dropout层2 | dropout率0.2 | 输入:(None,30) |
输出:(None,30) | ||
全连接层 | 神经元数量3 | 输入:(None,30) |
输出:(None,3) |
Table 2 CNN-LSTM model parameters
层定义 | 层参数 | 层输入、输出尺寸 |
---|---|---|
1Dconv层1 | 卷积核数量10,长度2 | 输入:(None,10,4) |
输出:(None,9,10) | ||
最大池化层1 | 池化窗口长度2 | 输入:(None,9,10) |
输出:(None,4,10) | ||
1Dconv层2 | 卷积核数量10,长度2 | 输入:(None,4,10) |
输出:(None,3,10) | ||
最大池化层2 | 池化窗口长度2 | 输入:(None,3,10) |
输出:(None,1,10) | ||
LSTM层1 | 神经元数量30 | 输入:(None,1,10) |
输出:(None,1,30) | ||
Dropout层1 | dropout率0.2 | 输入:(None,1,30) |
输出:(None,1,30) | ||
LSTM层2 | 神经元数量30 | 输入:(None,1,30) |
输出:(None,30) | ||
Dropout层2 | dropout率0.2 | 输入:(None,30) |
输出:(None,30) | ||
全连接层 | 神经元数量3 | 输入:(None,30) |
输出:(None,3) |
模型 | 层定义 | 层参数 |
---|---|---|
LSMT层1 | 神经元数量50 | |
Dropout层1 | Dropout率0.2 | |
LSTM模型 | LSMT层2 | 神经元数量50 |
Dropout层2 | Dropout率0.2 | |
全连接层 | 神经元数量3 | |
GRU层1 | 神经元数量50 | |
Dropout层1 | Dropout率0.2 | |
GRU模型 | GRU层2 | 神经元数量50 |
Dropout层2 | Dropout率0.2 | |
全连接层 | 神经元数量3 | |
全连接层1 | 神经元数量100 | |
Dropout层1 | Dropout率0.2 | |
BP模型 | 全连接层2 | 神经元数量100 |
Dropout层2 | Dropout率0.2 | |
全连接层 | 神经元数量3 |
Table 3 Comparison of structural parameters of different models
模型 | 层定义 | 层参数 |
---|---|---|
LSMT层1 | 神经元数量50 | |
Dropout层1 | Dropout率0.2 | |
LSTM模型 | LSMT层2 | 神经元数量50 |
Dropout层2 | Dropout率0.2 | |
全连接层 | 神经元数量3 | |
GRU层1 | 神经元数量50 | |
Dropout层1 | Dropout率0.2 | |
GRU模型 | GRU层2 | 神经元数量50 |
Dropout层2 | Dropout率0.2 | |
全连接层 | 神经元数量3 | |
全连接层1 | 神经元数量100 | |
Dropout层1 | Dropout率0.2 | |
BP模型 | 全连接层2 | 神经元数量100 |
Dropout层2 | Dropout率0.2 | |
全连接层 | 神经元数量3 |
模型 | CNN-LSTM | GRU | LSTM | BP |
---|---|---|---|---|
MAE/m | 0.0252 | 0.0304 | 0.0312 | 0.0889 |
Table 4 Model evaluation parameters
模型 | CNN-LSTM | GRU | LSTM | BP |
---|---|---|---|---|
MAE/m | 0.0252 | 0.0304 | 0.0312 | 0.0889 |
模型 | CNN-LSTM | LSTM | GRU | BP |
---|---|---|---|---|
预测1s MAE/m | 2.814 | 3.753 | 3.767 | 8.786 |
预测3s MAE/m | 12.116 | 15.423 | 14.75 | 38.25 |
Table 5 Comprehensive evaluation of cumulative forecasts
模型 | CNN-LSTM | LSTM | GRU | BP |
---|---|---|---|---|
预测1s MAE/m | 2.814 | 3.753 | 3.767 | 8.786 |
预测3s MAE/m | 12.116 | 15.423 | 14.75 | 38.25 |
[1] |
张昊, 周军辉, 吴松, 等. 飞航武器遥测系统现状及发展趋势分析[J]. 飞航导弹, 2017(11): 80-84.
|
|
|
[2] |
邵云峰, 崔玉江. 弹载“黑匣子”设计方法[J]. 现代防御技术, 2016, 44(2): 203-208.
|
|
|
[3] |
修观, 王良明, 杨荣军. 线性弹道模型建立与仿真[J]. 海军工程大学学报, 2010, 22(2): 84-91, 96.
|
|
|
[4] |
doi: 10.1061/(ASCE)AS.1943-5525.0000044 URL |
[5] |
史金光, 刘猛, 曹成壮, 等. 弹道修正弹落点预报方法研究[J]. 弹道学报, 2014, 26(2): 29-33.
|
|
|
[6] |
doi: 10.1109/TNNLS.2017.2766168 pmid: 29989994 |
[7] |
doi: 10.1007/s00607-019-00752-1 |
[8] |
doi: 10.1007/s00607-019-00753-0 |
[9] |
doi: 10.1016/j.jpdc.2017.08.013 URL |
[10] |
|
[11] |
doi: 10.1007/s10596-021-10037-2 |
[12] |
doi: 10.1109/TITS.2020.3004807 URL |
[13] |
张宏鹏, 黄长强, 唐上钦, 等. 基于卷积神经网络的无人作战飞机飞行轨迹实时预测[J]. 兵工学报, 2020, 41(9): 1894-1903.
doi: 10.3969/j.issn.1000-1093.2020.09.022 |
doi: 10.3969/j.issn.1000-1093.2020.09.022 |
|
[14] |
doi: 10.1016/j.imavis.2021.104110 URL |
[15] |
doi: 10.1016/j.dss.2020.113246 URL |
[16] |
|
[17] |
doi: 10.1109/Access.6287639 URL |
[18] |
李兴隆, 贾方秀, 王晓鸣, 等. 基于线性弹道模型的末段修正弹落点预测[J]. 兵工学报, 2015, 36(7): 1188-1194.
doi: 10.3969/j.issn.1000-1093.2015.07.006 |
|
|
[19] |
|
[20] |
王晓鹏, 王雨时, 卢凤生, 等. 155m口径火炮榴弹结构特征数分布特性研究[J]. 探测与控制学报, 2015, 37(5): 66-72.
|
|
|
[21] |
史继刚, 易文俊, 管军, 等. 基于粒子群-牛顿算法的弹丸阻力系数辨识[J]. 兵器装备工程学报, 2017, 38(2): 23-26, 29.
|
|
|
[22] |
doi: 10.1109/5.726791 URL |
[23] |
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[1] | YANG Jiaming, PAN Yue, WANG Qiang, CAO Huaigang, GAO Sunpei. Research on Deep Learning Method of Underwater Weak Target Tracking [J]. Acta Armamentarii, 2024, 45(2): 385-394. |
[2] | ZHANG Kun, DU Ruiyi, SHI Haotian, HUA Shuai. Prediction of Aircraft Trajectory Based on Mogrifier-BiGRU [J]. Acta Armamentarii, 2024, 45(2): 373-384. |
[3] | TIAN Daming, MIAO Pu. Visible Light Communication Nonlinear Equalizer Based on Model Solving and Deep Learning [J]. Acta Armamentarii, 2024, 45(2): 466-473. |
[4] | PENG Peiran, REN Shubo, LI Jianan, ZHOU Hongwei, XU Tingfa. Illumination-aware Multispectral Fusion Network for Pedestrian Detection [J]. Acta Armamentarii, 2023, 44(9): 2622-2630. |
[5] | QIN Haolin, XU Tingfa, LI Jianan. Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure [J]. Acta Armamentarii, 2023, 44(9): 2639-2649. |
[6] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[7] | LIAN Jing, DING Rongqi, LI Linhui, WANG Xuecheng, ZHOU Yafu. Vehicle Trajectory Prediction Method Based on Graph Models and Attention Mechanism [J]. Acta Armamentarii, 2023, 44(7): 2162-2170. |
[8] | REN Jihuan, WU Xiang, BO Yuming, WU Panlong, HE Shan. Ballistic Trajectory Prediction Based on Context-enhanced Long Short-Term Memory Network [J]. Acta Armamentarii, 2023, 44(2): 462-471. |
[9] | WANG Yang, FENG Yongxin, SONG Bixue, TIAN Binghe. A Modulation Recognition Algorithm of DP-DRCnet Convolutional Neural Network [J]. Acta Armamentarii, 2023, 44(2): 545-555. |
[10] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
[11] | WANG Qiang, WU Letian, LI Hong, WANG Yong, WANG Huan, YANG Wankou. An Infrared Small Target Detection Method via Dual Network Collaboration [J]. Acta Armamentarii, 2023, 44(10): 3165-3176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||