欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (8): 240904-.doi: 10.12382/bgxb.2024.0904

• • 上一篇    下一篇

基于高斯过程回归的无人车辆轨迹跟踪MPC

李秦1,*(), 何洪文1,**(), 胡满江2   

  1. 1.北京理工大学 高端汽车集成与控制全国重点实验室, 北京 100081
    2.湖南大学 整车先进设计制造技术全国重点实验室, 湖南 长沙 410082
  • 收稿日期:2024-09-29 上线日期:2025-08-28
  • 通讯作者:
  • 基金资助:
    湖南大学整车先进设计制造技术全国重点实验室开放基金项目(32215008)

Model Predictive Control of Unmanned Vehicle Trajectory Tracking Based on Gaussian Process Regression

LI Qin1,*(), HE Hongwen1,**(), HU Manjiang2   

  1. 1. National Key Laboratory for Advanced Vehicle Integration and Control, Beijing Institute of Technology, Beijing 100081, China
    2. State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Human University, Changsha 410082, Hunan, China
  • Received:2024-09-29 Online:2025-08-28

摘要:

轨迹跟踪是无人驾驶控制系统中至关重要的功能之一。车辆动力学模型对轨迹跟踪性能有显著影响,但是存在模型复杂度和求解效率之间的矛盾,在非线性工况下无法满足轨迹跟踪精度要求,为此提出基于高斯过程回归(Gaussian Process Regression,GPR)的模型预测控制(Model Predictive Control,MPC) 方法。使用简单模型从而确保求解效率,通过GPR对车辆模型补偿从而提高轨迹跟踪性能。提出基于单轨动力学模型的车辆状态融合估计方法,获得GPR误差补偿模型;构建轨迹跟踪问题模型,推导GPR误差补偿模型在预测时域的迭代方程,对预测时域内的车辆状态进行动态补偿,实现轨迹跟踪控制;通过搭建实车验证平台开展典型工况试验验证,与无补偿MPC方法进行对比。研究结果表明,新方法轨迹跟踪精度得到明显提升,轨迹跟踪横向误差和航向误差分别降低了33.3%和27.9%,同时还兼顾了车辆舒适性的提升,侧向加速度和横摆角速度均值分别下降了17.1%和21.7%。

关键词: 高斯过程回归, 模型预测控制, 轨迹跟踪, 无人驾驶

Abstract:

Trajectory tracking is a crucial functionality of the autonomous driving control system.The vehicle dynamics model has a significant impact on trajectory tracking performance,however,there is a conflict between model complexity and solving efficiency,often leading to insufficient tracking accuracy under nonlinear conditions.To address this challenge,this paper proposes a model predictive control method based on Gaussian process regression (GPR) for trajectory tracking.A simplified model is used to ensure solving efficiency,and GPR model is employed to compensate for the vehicle model,thereby enhancing the trajectory tracking performance.First,a vehicle state fusion estimation method based on the single-track dynamics model is developed to obtain the GPR compensation model.A trajectory tracking error model is developed.Based on the trajectory tracking error from vehicle dynamics model,the iterative equation for GPR error compensation within the predictive horizon is derived to dynamically compensate for model errors in the vehicle state prediction for achieving the trajectory tracking control.Finally,a real-vehicle validation platform is constructed to validate the proposed method under typical driving conditions.The proposed method is compared with other predictive control methods without GPR compensation.The results show the proposed method achieves a significant improvement in trajectory tracking accuracy.Specifically,the lateral and heading errors are reduced by 33.3% and 27.9%,respectively.Furthermore,the vehicle comfort performance is also improved,and the mean lateral acceleration and yaw rate are reduced by 17.1% and 21.7%,respectively.

Key words: Gaussian process regression, model predictive control, trajectory tracking, autonomous driving

中图分类号: