欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (3): 240282-.doi: 10.12382/bgxb.2024.0282

• • 上一篇    下一篇

基于运动阵列微波成像与多尺度可变形卷积网络的引信目标识别方法

韩燕文1, 闫晓鹏1, 高晓峰2, 伊光华1, 代健1,*()   

  1. 1 北京理工大学 机电动态控制重点实验室, 北京 100081
    2 北京无线电测量研究所, 北京 100854
  • 收稿日期:2024-04-12 上线日期:2025-03-26
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(62301051); 173基金项目(2022-JCJQ-JJ-0392); 机电动态控制重点实验室开放课题基金资助项目(6142601220309)

Fuze Target Recognition Method Based on Motion Array Microwave Imaging and Multi-scale Deformable Convolutional Network

HAN Yanwen1, YAN Xiaopeng1, GAO Xiaofeng2, YI Guanghua1, DAI Jian1,*()   

  1. 1 Key Laboratory of Mechanical and Electrical Dynamic Control, Beijing Institute of Technology, Beijing 100081, China
    2 Beijing Institute of Radio Measurement, Beijing 100854, China
  • Received:2024-04-12 Online:2025-03-26

摘要:

针对传统调频连续波(Frequency Modulated Continuous Wave,FMCW)引信探测维度低、方位分辨能力弱导致目标识别能力不足的问题,提出基于运动阵列微波成像与多尺度可变形卷积网络(Multi-Scale Deformable Convolutional Networks,MSDCN)的引信目标识别方法。在充分分析引信运动过程中回波相位变化规律的基础上建立FMCW运动阵列天线模型,通过运动合成扩充引信天线虚拟阵元数,大幅度提升引信方位向分辨率,实现目标距离-方位的二维高分辨成像。同时,深入分析弹目交会过程中由于目标位置、姿态、距离等状态变化形成的图像多尺度特性,构建MSDCN目标识别模型,提高引信对复杂动态交会场景下目标成像多尺度特性的自适应识别能力。实验结果表明,该方法能够显著提高引信方位分辨能力,在不同目标场景下均取得较好的成像和识别效果,对典型目标多尺度像识别准确率达到94%,-6dB信噪比时目标识别准确率仍能达到88%。

关键词: 引信, 调频连续波, 运动阵列, 距离-方位二维像, 多尺度可变形卷积网络, 目标识别

Abstract:

In response to the challenge of inadequate target recognition capabilities due to the limited detection dimension and weak azimuth resolution of conventional frequency modulated continuous wave (FMCW) fuze,a fuze target recognition method based on motion array microwave imaging and multi-scale deformable convolutional networks (MSDCN) is proposed.A FMCW motion array antenna model is established thorough analysis of the thorough analysis of echo phase variation during the fuze motion.The virtual array elements of fuze antenna are expanded by motion synthesis to significantly enhance the azimuth resolution of the fuze,thus achieving the two-dimensional high-resolution imaging of target distance and azimuth.Simultaneously,a MSDCN target recognition model is constructed by delving into the multi-scale characteristics of the images formed due to the variations in target position,attitude,distance,and other states during the fuze-target encounter process.This enhances the adaptive recognition capability of fuze for the multi-scale characteristics of target imaging in complex dynamic encounter scenarios.The experimental results demonstrate that the proposed method significantly enhances the azimuth resolution of fuze.It achieves satisfactory imaging and recognition results in various target scenarios.The accuracy of multi-scale image recognition for typical targets reaches 94%,and even at -6dB signal-to-noise ratio,the target recognition accuracy remains at 88%.

Key words: fuze, frequency-modulated continuous wave, motion array antenna, range-azimuth two-dimensional image, multi-scale deformable convolutional network, target recognition

中图分类号: