欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (12): 4272-4282.doi: 10.12382/bgxb.2023.0984

• • 上一篇    下一篇

基于分层解耦的四轮足机器人模型预测控制

邢伯阳1,2, 许威1,*(), 李宇峰2,3, 赵浩宇2,3, 王康2, 闫曈2,3   

  1. 1 中国北方车辆研究所, 北京 100072
    2 中兵智能创新研究院有限公司, 北京 100072
    3 群体协同与自主实验室, 北京 100072
  • 收稿日期:2023-10-07 上线日期:2024-03-06
  • 通讯作者:
  • 基金资助:
    国家重点研发计划项目(2022YFB4701500)

Model Predictive Control for Wheeled L-quadruped Robots Based on Hierarchical Decoupling

XING Boyang1,2, XU Wei1,*(), LI Yufeng2,3, ZHAO Haoyu2,3, WANG Kang2, YAN Tong2,3   

  1. 1 China North Vehicle Research Institute, Beijing 100072, China
    2 China North Artificial Intelligence & Innovation Research Institute, Beijing 100072, China
    3 Collective Intelligence & Collaboration Laboratory, Beijing 100072, China
  • Received:2023-10-07 Online:2024-03-06

摘要:

轮足机器人是一种新型的复合机器人平台,其结合了足式机器人力伺服控制、浮动基座动力学与轮式机器人轮地接触的模型,具有轮式快速机动、足式越障机动以及轮步复合3种复合机动模式。为实现上述3种机动模式,提出了一种基于线性模型预测控制(Model Predictive Control, MPC)的轮足机器人控制方法,其采用分层控制的框架对轮子转速与四足力伺服稳定控制进行解耦,对轮子进行独立的转速控制与扭矩估计,并将轮地扭矩反馈转化为外力扰动,引入MPC控制模型中进行在线补偿;针对机体MPC稳定控制通过状态扩维的方式将控制模型转化为Ax+Bu的标准形式,通过采用重力加速度将足端力扰动进行等效转换,从而实现在不增加系统状态空间维度的同时将外力扰动引入动力学模型。通过仿真和在Panda-W轮足机器人上的实际测试,验证了所提算法可以有效补偿轮足加减速时轮地扰动力,实现机体稳定控制并进一步完成Trot轮步复合机动,在典型的平地和越野地形下有较好的控制效果。

关键词: 轮足机器人, 模型预测控制, 分层控制, 轮步复合机动

Abstract:

The wheeled-quadruped hybrid robot is an innovative composite robot platform that combines the features of legged and wheeled robots, enabling three modes of movement: fast wheel motion, legged obstacle-crossing, and wheel-leg combination. A control method for wheeled-quadruped robot based on linear model predictive control (MPC) is proposed to achieve the above three maneuvering modes. The MPC-based control method employs a hierarchical framework to separate the wheel speed control from the quadruped stability control. It independently controls the wheel speeds and estimates the torques while compensating for wheel-ground disturbances in real-time. For body stability control with MPC, the control model is converted into Ax+Bu standard form using state augmentation. Gravity acceleration is used to equivalently transform the end-effector force disturbances, allowing the external force disturbances to be integrated into the dynamic model without increasing the system’s state space dimension. In the simulation and practical test on Panda-W wheeled-quadruped robot, the proposed algorithm effectively mitigates the wheel-ground disturbances during wheel-leg acceleration and deceleration, achieving stable body control and successful Trot gait locomotion on various terrains.

Key words: wheeled-quadruped robot, model predictive control, hierarchical control, wheel-legged hybird locomotion

中图分类号: