[1] |
CARLO J D, WENSING P M, KATZ B, et al. Dynamic locomotion in the MIT Cheetah 3 through convex model-predictive control[C]// Proceedings of the 31th International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain:IEEE, 2018: 1-9.
|
[2] |
KIM D, CARLO J D, KATZ B, et al. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control: arXiv:1909.06586[R/OL]. NY, US: Cornell University, 2019(2019-09-14)[2023-10-07]. https://arxiv.org/abs/1909.06586.
|
[3] |
CHIGNOLI M, KIM S. Online trajectory optimization for dynamic aerial motions of a quadruped robot[C]// Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi’an, China: IEEE, 2021: 7693-7699.
|
[4] |
NGUYEN C H, BAO L F, NGUYEN Q. Continuous jumping for legged robots on stepping stones via trajectory optimization and model predictive control[C]// Proceedings of the 2022 IEEE 61st Conference on Decision and Control (CDC). Cancun, Mexico: IEEE, 2022: 93-99.
|
[5] |
BJELONIC M, SANKAR P K, BELLICOSO D, et al. Rolling in the deep-hybrid locomotion for wheeled-legged robots using online trajectory optimization[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3626-3633.
|
[6] |
KLEMM V, MORRA A, GULICH L, et al. LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3745-3752.
|
[7] |
HOSSEINI M, RODRIGUEZ D A, BEHNKE S. State estimation for hybrid locomotion of Driving-Stepping quadrupeds[C]// Proceedings of the 2022 6th IEEE International Conference on Robotic Computing (IRC). Italy: IEEE, 2022: 103-110.
|
[8] |
de VIRAGH Y, BJELONIC M, BELLICOSO C D, et al. Trajectory optimization for wheeled-legged quadrupedal robots using linearized ZMP constraints[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1633-1640.
|
[9] |
ZHOU S Y, LIU S X, LIN Z X, et al. Cascade trajectory optimization with phase duration adaption and control for wheel-legged robots overcoming high obstacles[C]// Proceedings of the 2023 8th International Conference on Advanced Robotics and Mechatronics (ICARM). Sanya, China: IEEE, 2023: 832-839.
|
[10] |
SEMINI C, BARASUOL V, CUNHA T B, et al. Towards versatile legged robots through active impedance control[J]. International Journal of Robotics Research, 2015, 34(7): 1003-1020.
|
[11] |
ZHAO F Z, GAO J Y. Anti-slip gait planning for a humanoid robot in fast walking[J]. Applied Sciences, 2019, 9(13):2657.
|
[12] |
CARON S, PHAM Q, NAKAMURA Y. ZMP support areas for multicontact mobility under frictional constraints[J]. IEEE Transactions on Robotics, 2017, 33(1): 67-80.
|
[13] |
SUGIHARA T, YAMAMOTO T. Foot-guided agile control of a biped robot through ZMP manipulation[C]// Proceedings of the 2017 30th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017: 4546-4551.
|
[14] |
HU J J, PRATT J E, CHEW C, et al. Virtual model control of a biped walking robot[D]. Cambridge, MA, US: Massachusetts Institute of Technology, 1995.
|
[15] |
辛亚先. 基于分布式模型的双轮腿—臂机器人运动与作业协调控制研究[D]. 济南: 山东大学, 2021.
|
|
XIN Y X. Research on motion and task coordination control ofbiped-armed robot based on distributed model[D]. Jinan: Shandong University, 2021. (in Chinese)
|
[16] |
ZHANG G T, RONG X W, HUI C, et al. Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control[J]. Advanced Robotics, 2016, 30(4): 284-297.
|
[17] |
de VIRAGH Y, BJELONIC M, BELLICOSO C D, et al. Trajectory optimization for wheeled legged quadrupedal robots using linearized ZMP constraints[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1633-1640.
|
[18] |
BJELONIC M, GRANDIA R, HARLEY O, et al. Whole-body MPC and online gait sequence generation for wheeled-legged robots[C]// Proceedings of the 2021 34th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic: IEEE, 2021: 8388-8395.
|
[19] |
LI J, MA J B, NGUYEN, et al. Balancing control and pose optimization for wheel-legged robots navigating uneven terrains: arXiv:2109.09934v2[R/OL]. Ithaca, NY, US: Cornell University, 2021(2021-09-21)[2023-10-07]. https://arxiv.org/abs/2109.09934.
|
[20] |
BJELONIC M, BELLICOSO D, VIRAGH Y D, et al. Keep Rollin’ whole-body motion control and planning for wheeled quadrupedal robots[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 2116-2123.
|