兵工学报 ›› 2024, Vol. 45 ›› Issue (12): 4259-4271.doi: 10.12382/bgxb.2023.1215
李豪天1,2, 崔欣雨1,2, 刘梦真1,2, 黄广炎1,2,3, 吕中杰1, 张宏1,2,3,*()
收稿日期:
2023-12-27
上线日期:
2024-12-30
通讯作者:
基金资助:
LI Haotian1,2, CUI Xinyu1,2, LIU Mengzhen1,2, HUANG Guangyan1,2,3, LÜ Zhongjie1, ZHANG hong1,2,3,*()
Received:
2023-12-27
Online:
2024-12-30
摘要:
在信息化战争中,爆炸物破片毁伤效应评估对实现精准打击具有重要意义,然而在毁伤实验中毁伤区域的分布和几何信息主要由人工统计,获取效率低下、精度不可控。为此,提出基于孪生网络和区域注意力机制的轻量化图像分割模型,实现小样本下对小目标球形爆炸破片毁伤区域的高效、精准识别功能。通过引入孪生结构、区域注意力模块和多尺度卷积模块提高模型对爆炸破孔的感知能力;加入多约束条件的损失函数,并筛选最佳优化器,使模型优化时更加聚焦有效信息,加速模型收敛;提出连通域融合分水岭算法的毁伤区域量化检测方法,实现爆炸破孔重叠情况下的精确识别。实验结果表明,相比目前主流模型,所提方法实现了更高的效率和精度,对毁伤区域面积和直径预测结平均误差分别为4.78%和3.79%;研究工作为实现含破片爆炸物毁伤智能化评估提供了参考。
中图分类号:
李豪天, 崔欣雨, 刘梦真, 黄广炎, 吕中杰, 张宏. 基于孪生网络和区域注意力机制的球形爆炸破片毁伤效应识别研究[J]. 兵工学报, 2024, 45(12): 4259-4271.
LI Haotian, CUI Xinyu, LIU Mengzhen, HUANG Guangyan, LÜ Zhongjie, ZHANG hong. Research on the Identification of Spherical Explosive Fragmentation Damage Effect Based on Siamese Networks and Regional Attention Mechanisms[J]. Acta Armamentarii, 2024, 45(12): 4259-4271.
阶段 | 学习率 | 损失 | 训练轮次 |
---|---|---|---|
1 | 0.02 | Ls+Lc | 10 |
2 | 0.002 | Ls+Lc+Lseg | 50 |
3 | 0.0002 | Lseg | 10 |
表1 各阶段网络参数
Table 1 Network parameters at each stage
阶段 | 学习率 | 损失 | 训练轮次 |
---|---|---|---|
1 | 0.02 | Ls+Lc | 10 |
2 | 0.002 | Ls+Lc+Lseg | 50 |
3 | 0.0002 | Lseg | 10 |
模型 | 查准 率/% | 召回 率/% | F1值/ % | 平均交 并比/% | 单帧 耗时/% |
---|---|---|---|---|---|
LU-Net | 59.1 | 94.7 | 72.8 | 78.3 | 14.5 |
LU-Net+MCL | 81.7 | 90.4 | 85.8 | 87.5 | 14.5 |
LU-Net+MCL+RAM | 82.5 | 94.1 | 87.9 | 89.2 | 15.1 |
LU-Net+MCL+ RAM+MCM | 88.6 | 95.3 | 91.7 | 92.4 | 17.5 |
表2 网络结构模块的消融实验结果
Table 2 Ablation experimental results of network structure modules
模型 | 查准 率/% | 召回 率/% | F1值/ % | 平均交 并比/% | 单帧 耗时/% |
---|---|---|---|---|---|
LU-Net | 59.1 | 94.7 | 72.8 | 78.3 | 14.5 |
LU-Net+MCL | 81.7 | 90.4 | 85.8 | 87.5 | 14.5 |
LU-Net+MCL+RAM | 82.5 | 94.1 | 87.9 | 89.2 | 15.1 |
LU-Net+MCL+ RAM+MCM | 88.6 | 95.3 | 91.7 | 92.4 | 17.5 |
优化器 | F1值/% | MIoU/% |
---|---|---|
SGD | 91.785 | 92.357 |
Adagrad | 91.250 | 91.900 |
Adam | 94.669 | 94.907 |
RMSprop | 95.241 | 95.428 |
表3 4种优化器的实验结果
Table 3 Experimental results of four optimizers
优化器 | F1值/% | MIoU/% |
---|---|---|
SGD | 91.785 | 92.357 |
Adagrad | 91.250 | 91.900 |
Adam | 94.669 | 94.907 |
RMSprop | 95.241 | 95.428 |
模型 | F1值/% | MIoU/% | 单帧耗时/ms |
---|---|---|---|
Deeplabv3[ | 83.553 | 85.760 | 40.6 |
U-Net[ | 94.296 | 94.570 | 47.3 |
MALUNet[ | 79.997 | 83.206 | 12.6 |
SALU-Net | 95.241 | 95.428 | 17.5 |
表4 不同分割模型在本文数据集上的评价指标
Table 4 Evaluation indexes of the different segmentation models on the datasets in this paper
模型 | F1值/% | MIoU/% | 单帧耗时/ms |
---|---|---|---|
Deeplabv3[ | 83.553 | 85.760 | 40.6 |
U-Net[ | 94.296 | 94.570 | 47.3 |
MALUNet[ | 79.997 | 83.206 | 12.6 |
SALU-Net | 95.241 | 95.428 | 17.5 |
[1] |
李峰, 石全, 孙正. 目标毁伤效果评估技术研究综述[J]. 兵器装备工程学报, 2018, 39(9): 69-72.
|
|
|
[2] |
|
[3] |
|
[4] |
doi: 10.1109/ACCESS.2019.2939201 |
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
雷江波, 王泽民, 李静. 基于Faster R-CNN的破片群图像目标检测研究[J]. 国外电子测量技术, 2021, 40(1): 70-74.
|
|
|
[14] |
魏琦, 何子清, 王亚林, 等. 基于DenseNet和注意力机制的静爆场破片识别方法研究[J]. 兵器装备工程学报, 2023, 44(2): 259-265.
|
|
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
惠康华, 杨卫, 刘浩翰, 等. 基于YOLOv5的增强多尺度目标检测方法[J]. 兵工学报, 2023, 44(9): 2600-2610.
doi: 10.12382/bgxb.2022.1147 |
doi: 10.12382/bgxb.2022.1147 |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
刘梦真, 黄广炎, 张宏, 等. 小样本驱动特征分段网络的防护材料折痕检测[J]. 兵工学报, 2024, 45(3): 963-974.
doi: 10.12382/bgxb.2022.0884 |
doi: 10.12382/bgxb.2022.0884 |
|
[34] |
|
[35] |
|
[36] |
|
[1] | 阴国华, 齐咏生, 刘利强, 苏建强, 张丽杰. 基于Ghost-TiFPN的轻量化快速目标跟踪算法[J]. 兵工学报, 2024, 45(5): 1703-1716. |
[2] | 惠康华, 杨卫, 刘浩翰, 张智, 郑锦, 百晓. 基于YOLOv5的增强多尺度目标检测方法[J]. 兵工学报, 2023, 44(9): 2600-2610. |
[3] | 姜珊, 底晓强, 韩成. 融合时空特性的孪生网络视觉跟踪[J]. 兵工学报, 2021, 42(9): 1940-1950. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||