欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (12): 4259-4271.doi: 10.12382/bgxb.2023.1215

• • 上一篇    下一篇

基于孪生网络和区域注意力机制的球形爆炸破片毁伤效应识别研究

李豪天1,2, 崔欣雨1,2, 刘梦真1,2, 黄广炎1,2,3, 吕中杰1, 张宏1,2,3,*()   

  1. 1 北京理工大学 爆炸科学与安全防护全国重点实验室, 北京 100081
    2 北京理工大学重庆创新中心 现代兵器技术实验室, 重庆 401120
    3 北京理工大学 爆炸防护与应急处置技术教育部工程研究中心, 北京 100081
  • 收稿日期:2023-12-27 上线日期:2024-12-30
  • 通讯作者:
  • 基金资助:
    国家自然科学基金面上项目(12372354); 科技部重点研发计划项目(2022YFC3320502); 重庆市面上基金项目(cstc2021jcy-msxmX0666)

Research on the Identification of Spherical Explosive Fragmentation Damage Effect Based on Siamese Networks and Regional Attention Mechanisms

LI Haotian1,2, CUI Xinyu1,2, LIU Mengzhen1,2, HUANG Guangyan1,2,3, LÜ Zhongjie1, ZHANG hong1,2,3,*()   

  1. 1 State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
    2 Modern Weapon Technology Laboratory, Chongqing Innovation Center of Beijing Institute of Technology, Chongqing 401120, China
    3 Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
  • Received:2023-12-27 Online:2024-12-30

摘要:

在信息化战争中,爆炸物破片毁伤效应评估对实现精准打击具有重要意义,然而在毁伤实验中毁伤区域的分布和几何信息主要由人工统计,获取效率低下、精度不可控。为此,提出基于孪生网络和区域注意力机制的轻量化图像分割模型,实现小样本下对小目标球形爆炸破片毁伤区域的高效、精准识别功能。通过引入孪生结构、区域注意力模块和多尺度卷积模块提高模型对爆炸破孔的感知能力;加入多约束条件的损失函数,并筛选最佳优化器,使模型优化时更加聚焦有效信息,加速模型收敛;提出连通域融合分水岭算法的毁伤区域量化检测方法,实现爆炸破孔重叠情况下的精确识别。实验结果表明,相比目前主流模型,所提方法实现了更高的效率和精度,对毁伤区域面积和直径预测结平均误差分别为4.78%和3.79%;研究工作为实现含破片爆炸物毁伤智能化评估提供了参考。

关键词: 孪生网络, 毁伤效应评估, 损伤识别, 区域注意力机制, 多尺度卷积

Abstract:

In the information warfare, the damage assessment of explosive fragments is of great significance to achieve accurate strike. However, the manual acquisition of distribution and geometric information of damage areas are inefficient in the damage experiment. To this end, a lightweight image segmentation model based on siamese networks and regional attention mechanisms is proposed, which achieves the efficient and accurate recognition of small-targeted spherical explosive fragmentation damage area under small samples. The model’s ability to perceive the explosion holes is improved by introducing the siamese structure, regional attention module and multi-scale convolution module. A loss function with multiple constraints is added and the best optimizer is screened so that the model optimization is more focused on the effective information for accelerating the model convergence. A quantitative detection method for the damaged area based on the connected-domain fusion watershed algorithm is proposed to achieve the accurate identification of the overlapping case of explosion broken holes. Experimental results show that the proposed method achieves higher efficiency and accuracy compared with the current mainstream models, and the average errors in predicting the area and diameter of damage region are 4.78% and 3.79%, respectively. The research work provides a reference for realizing the intelligent damage assessment of explosives containing fragments.

Key words: siamese network, damage effect assessment, damage recognition, regional attention mechanism, multi-scale convolution

中图分类号: