欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (7): 2110-2127.doi: 10.12382/bgxb.2023.0132

• • 上一篇    下一篇

越野环境下势场搜索树智能车辆路径规划方法

田洪清1, 马明涛1, 张博1, 郑讯佳2,*()   

  1. 1 92228部队, 北京 100072
    2 重庆文理学院 智能制造工程学院, 重庆 402160
  • 收稿日期:2023-02-24 上线日期:2023-11-18
  • 通讯作者:
  • 基金资助:
    国家自然科学基金青年基金项目(52102454); 重庆市博士后特别资助项目(2021XM3069)

Potential Field Exploring Tree Path Planning for Intelligent Vehicle in Off-road Environment

TIAN Hongqing1, MA Mingtao1, ZHANG Bo1, ZHENG Xunjia2,*()   

  1. 1 Unit 92228 of PLA, Beijing 100072, China
    2 School of Intelligent Manufacturing Engeering, Chongqing University of Arts and Sciences, Chongqing 402160, China
  • Received:2023-02-24 Online:2023-11-18

摘要:

智能车辆路径规划是智能驾驶的一项关键技术,传统的车辆路径规划方法以最短通行距离或最小通行时间为优化目标,忽视了规划过程中的车辆运动风险。在快速随机搜索树算法的基础上,运用势场模型量化评估车辆运动风险。在快速获得车辆初始运动轨迹的基础上,以车辆运动轨迹的安全性以及通行距离和车辆转角作为运动轨迹评估依据,采用轨迹重构优化方法持续优化车辆运动轨迹。采用场景模拟仿真方法,验证规划轨迹的性能。仿真实验结果表明,在典型场景下,该方法具备平衡车辆运动效率与安全性能的特点,能在越野环境中规避障碍物和环境威胁,所规划的运动轨迹符合车辆运动学特性,运动轨迹的安全性好,通行效率较高。

关键词: 智能车辆, 越野环境, 势场模型, 风险评估, 随机搜索树, 路径规划

Abstract:

Path planning is a key technology for intelligent vehicles. The traditional vehicle path planning method takes the shortest traveling distance or minimum traveling time as the optimization goal, ignoring the risk of vehicle motion. A potential field based rapidly-exploring random tree (RRT) algorithm is proposed. The potential field model is used to quantitatively evaluate the driving risk, and a low-risk initial vehicle driving trajectory is obtained efficiently using the RRT algorithm. And then a trajectory reconstruction optimization method is adopted to continuously optimize the vehicle driving trajectory based on the driving safety, traveling distance and turning angle. The scenario simulation is used to verify the performance of the planning solution. The simulated results show that the proposed algorithm can balance the path planning efficiency and safety performance, while avoiding the obstacles and environmental threats in off-road environment. The planned trajectories conform to the vehicle kinematics features, good safety and high traveling efficiency.

Key words: intelligent vehicle, off-road environment, potential field model, risk evaluation, rapidly-exploring random tree, path planning

中图分类号: