[1] |
PINTO S C, ANDERSSON S B, HENDRICKX J M, et al. Optimal periodic multi-agent persistent monitoring of a finite set of targets with uncertain states[C]∥Proceedings of 2020 American Control Conference. Denver, CO, US:IEEE,2020:5207-5212
|
[2] |
HARI S, RATHINAM S, DARBHA S, et al. Optimal UAV route planning for persistent monitoring missions[J]. IEEE Transactions on Robotics, 2021, 37(2):550-566.
|
[3] |
MAINI P, YU K, SUJIT P B, et al. Persistent monitoring with refueling on a terrain using a team of aerial and ground robots[C]∥Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain:IEEE, 2018:8493-8498.
|
[4] |
MAINI P, TOKEKAR P, SUJIT P B. Visibility-based persistent monitoring of piecewise linear features on a terrain using multiple aerial and ground robots[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(4):1692-1704.
|
[5] |
LI Q, GAMA F, RIBEIRO A, et al. Graph neural networks for decentralized path planning[C]∥Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, NV, US: IEEE, 2020: 1901-1903.
|
[6] |
TOLSTAYA E, GAMA F, PAULOS J, et al. Learning decentralized controllers for robot swarms with graph neural networks[C]∥Proceedings of Conference on Robot Learning, Osaka, Japan: Proceedings of Machine Learning Research, 2019:521-531.
|
[7] |
LEW T, SHARMA A, HARRISON J, et al. Safe active dynamics learning and control: a sequential exploration-exploitation framework[J]. IEEE Transactions on Robotics, 2022, 38(5): 2888-2907.
|
[8] |
ZHANG Z, WANG X H, ZHANG Q R, et al. Multi-robot cooperative pursuit via potential field-enhanced reinforcement learning[C]∥Proceedings of 2022 International Conference on Robotics and Automation. Philadelphia, PA, US: IEEE, 2022: 8808-8814.
|
[9] |
ASARKAYA A S, AKSARAY D, AND YAZICIOĞLU Y, et al. Temporal-logic-constrained hybrid reinforcement learning to perform optimal aerial monitoring with delivery drones[C]∥Proceedings of 2021 International Conference on Unmanned Aircraft Systems. Athens, Greece: IEEE, 2021: 285-294.
|
[10] |
MD KABA, UZUNBAS M G, LIM S N. A reinforcement learning approach to the view planning problem[C]∥Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, US: IEEE, 2017:5094-5102.
|
[11] |
LIWEI A N, GUANG-HONG, et al. Opacity enforcement for confidential robust control in linear cyber-physical systems[J]. IEEE Transactions on Automatic Control, 2019, 65(3):1234-1241.
|
[12] |
WELIKALA S, CASSANDRAS C G. Greedy initialization for distributed persistent monitoring in network systems[J]. Automatica, 2021, 134:109943.
|
[13] |
WELIKALA S, CASSANDRAS C G. Asymptotic analysis for greedy initialization of threshold-based distributed optimization of persistent monitoring on graphs[J]. IFAC-PapersOnLine, 2020, 53(2):3433-3438.
|
[14] |
ZHOU N, CASSANDRAS C G, YU X, et al. Optimal threshold-based distributed control policies for persistent monitoring on graphs[C]∥Proceedings of 2019 American Control Conference. Philadelphia, PA, US: IEEE, 2019: 2030-2035.
|
[15] |
PINTO S C, ANDERSSON S B, HENDRICKX J M, et al. Multiagent persistent monitoring of targets with uncertain states[J]. IEEE Transactions on Automatic Control, 2022, 67(8): 3997-4012.
|
[16] |
ZHOU N, CASSANDRAS C G, YU X, et al. The price of decentralization: event-driven optimization for multi-agent persistent monitoring tasks[J]. IEEE Transactions on Control of Network Systems, 2021: 8(2):976-986.
|
[17] |
WANG Y W, WEI Y W, LIU X K, et al. Optimal persistent monitoring using second-order agents with physical constraints[J]. IEEE Transactions on Automatic Control, 2019:64(8): 3239-3252.
|
[18] |
REZAZADEH N, KIA S S. A sub-modular receding horizon solution for mobile multi-agent persistent monitoring[J]. Automatica, 2021, 127(1): 109460.
|
[19] |
李凯文, 张涛, 王锐, 等. 基于深度强化学习的组合优化研究进展[J]. 自动化学报, 2021, 47(11): 2521-2537
|
|
LI K W, ZHANG T, WANG R, et al. Research progress on combinatorial optimization based on deep reinforcement learning[J]. Acta Automatica Sinica, 2021, 47(11): 2521-2537. (in Chinese)
|
[20] |
SHU Y, CHEN Y, HU M, et al. UAV Path planning based on simultaneous optimization of monitoring frequency and security[C]∥Proceedings of the 2022 34rd Chinese Control and Decision Conference. Hefei, China: IEEE, 2022: 3808-3814.
|
[21] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518: 529-533.
|