[1] 钟宏伟.国外无人水下航行器装备与技术现状及展望[J].水下无人系统学报, 2017, 25(3): 215-225. ZHONG H W. Review and prospect of equipment and techniques for unmanned undersea vehicle in foreign countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 215-225. (in Chinese) [2] 严浙平,赵玉飞,陈涛,等.一种基于导航误差空间的无人水下航行器路径规划方法[J].兵工学报, 2014, 35(8): 1243-1250. YAN Z P, ZHAO Y F, CHEN T, et al. A novel method of uuv path planning based on navigation error space [J]. Acta Armamentarii, 2014, 35(8): 1243-1250. (in Chinese) [3] 曹晓明,魏勇,衡辉,等. 海流扰动下无人水下航行器的动态面反演轨迹跟踪控制[J].系统工程与电子技术, 2021, 43(6): 1664-1672. CAO X M, WEI Y, HENG H, et al. Dynamic surface backstepping trajectory tracking control of unmanned underwater vehicles with ocean current disturbances[J]. Systems Engineering and Electronic, 2021, 43(6): 1664-1672. (in Chinese) [4] AGHABABA M P, AMROLLAHI M H, BORJKHANI M. Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles[J]. Journal of Marine Science and Application, 2012, 11(3): 378-386. [5] 杜映峰, 陈万米, 范彬彬. 群智能算法在路径规划中的研究及应用[J]. 电子测量技术, 2016, 39(11): 65-70. DU Y F, CHEN W M, FAN B B. Research and application of swarm intelligence algorithm in path planning[J]. Electronic Measurement Technology, 2016, 39(11): 65-70. (in Chinese) [6] PANDEY P, SHUKLA A, TIWARI R. Three-dimensional path planning for unmanned aerial vehicles using glowworm swarm optimization algorithm[J]. International Journal of System Assurance Engineering and Management, 2018, 9(4): 836-852. [7] 马焱,肖玉杰,陈轶,等.基于改进烟花-蚁群算法的海流环境下水下无人潜航器的避障路径规划[J].导航与控制, 2019, 18(1): 51-59. MA Y, XIAO Y J, CHEN Y, et al. Obstacle avoidance path planning of unmanned underwater vehicle in ocean current environment based on improved fireworks-ant colony algorithm[J]. Navigation and Control, 2019, 18(1): 51-59. (in Chinese) [8] PU X, XIONG C, JI L, et al. 3D path planning for a robot based on improved ant colony algorithm[J/OL]. Evolutionary Intelligence, 2020(2020-04-13) [2021-03-30]. https:∥link.springer.com/article/10.1007/s12065-020-00397-6. [9] MA Y N, GONG Y J, XIAO C F, et al. Path planning for autonomous underwater vehicles: An ant colony algorithm incorporating alarm pheromone[J]. IEEE Transactions on Vehicular Technology, 2018, 68(1): 141-154. [10] 潘昕,吴旭升,侯新国,等.基于遗传蚂蚁混合算法的AUV全局路径规划[J].华中科技大学学报(自然科学版), 2017, 45(5): 45-49,76. PAN X, WU X S, HOU X G, et al. Global path planning based on genetic-ant hybrid algorithm for AUV[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(5): 45-49,76. (in Chinese) [11] 朱佳莹, 高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J].计算机工程与应用, 2021, 57(6): 267-273. ZHU J Y, GAO M T. AUV path planning based on particle swarm optimization and improved ant colony optimization[J]. Computer Engineering and Applications, 2021, 57(6): 267-273. (in Chinese) [12] 修春波, 张雨虹. 基于蚁群与鱼群的混合优化算法[J].计算机工程, 2008, (14): 206-207,218. XIU C B, ZHANG Y H. Hybrid optimization algorithm based on ant colony and fish school[J]. Computer Engineering, 2008, (14): 206-207,218. (in Chinese) [13] 邹挺. 基于蚁群和人工鱼群混合群智能算法在物流配送路径优化问题中的应用研究[D]. 苏州:苏州大学, 2011. ZOU T. A study on the issue of vehicle route optimization upon ant colony algorithm, artificial fish swarm algorithm and hybrid swarm intelligence algorithm[D]. Suzhou:Soochow University, 2011. (in Chinese) [14] 吕顺风. 蚁群鱼群混合算法在差异工件批调度中的应用[D].合肥:中国科学技术大学, 2017. L S F. Application of hybrid algorithms based on ant colony optimization and artificial fish swarm for batch processing machine with non-identical job sizes[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese) [15] MAYER L, JAKOBSSON M, ALLEN G, et al. The nippon foundation-GEBCO seabed 2030 project: The quest to see the world's oceans completely mapped by 2030[J]. Geosciences, 2018, 8(2):63. [16] 刘利强, 于飞, 戴运桃. 基于蚁群算法的水下潜器三维空间路径规划[J]. 系统仿真学报, 2008, 20(14): 3712-3716. LIU L Q, YU F, DAI Y T. Path planning of underwater vehicle in 3D space based on ant colony algorithm[J]. Journal of System Simulation, 2008, 20(14): 3712-3716. (in Chinese) [17] 丑强. 虚拟环境中基于八叉树的碰撞检测问题[D].长春:吉林大学, 2007. CHOU Q. Collision detection in virtual environment based on octree[D]. Changchun:Jilin University, 2007. (in Chinese) [18] 王磊. 海洋环境下水下机器人快速路径规划研究[D].哈尔滨:哈尔滨工程大学, 2007. WANG L. Research on fast path planning for AUV in ocean environment[D]. Harbin: Harbin Engineering University, 2007. (in Chinese) [19] DORIGO M, DI CARO G, GAMBARDELLA L M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(2): 137-172. [20] 李晓磊. 一种新型的智能优化方法-人工鱼群算法[D]. 杭州:浙江大学, 2003. LI X L. A new intelligent optimization method-artificial fish school algorithm[D]. Hangzhou:Zhejiang University, 2003. (in Chinese) [21] 陈雄, 袁杨. 一种机器人路径规划的蚁群算法[J]. 系统工程与电子技术, 2008, 30(5): 952-955. CHEN X, YUAN Y. Novel ant colony optimization algorithm for robot path planning[J]. Systems Engineering and Electronics, 2008, 30(5): 952-955. (in Chinese)
|