欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2020, Vol. 41 ›› Issue (9): 1783-1791.doi: 10.3969/j.issn.1000-1093.2020.09.010

• 论文 • 上一篇    下一篇

高速旋转弹丸炸药装药在膛内运动中底层温度的数值模拟

彭嘉诚, 蒋建伟, 廖伟   

  1. (北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081)
  • 上线日期:2020-11-18
  • 通讯作者: 蒋建伟(1962—),男,教授,博士生导师 E-mail:bitjjw@bit.edu.cn
  • 作者简介:彭嘉诚(1994—), 男, 博士研究生。 E-mail: 3120185175@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(11872123)

Bottom Temperature Simulation of Explosive Charge in High-speed Rotating Projectile in Internal Ballistic Process

PENG Jiacheng, JIANG Jianwei, LIAO Wei   

  1. (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)
  • Online:2020-11-18

摘要: 针对装填压装药柱的高速旋转弹丸发射安全性问题,基于摩擦产热-热传导-升温理论,建立弹丸炸药装药在膛内运动过程中因摩擦引起的温度变化计算模型。以某大口径高速旋转弹丸出膛后掉弹事故为计算实例,采用通用仿真分析软件LS-DYNA数值模拟该弹丸在膛内运动全过程,获取装药底面压力和装药与弹体相对角速度随时间变化规律,并结合MATLAB软件获取其具体函数形式,最终计算得到装药在膛内运动过程中的温度变化。计算结果表明:环境温度为50 ℃时,膛内炸药装药与弹体发生显著相对转动,在装药底面发生强摩擦、产生大量热量,向装药热传导后致使底层炸药升温,温度最高达302.3 ℃,远高于炸药热分解温度;热点将在装药表面大量产生,并在弹体内密闭空间快速成长,最终引发装药燃爆,造成掉弹事故;所提计算方法可为该类弹丸炸药装药结构设计和工艺改进提供理论参考。

关键词: 高速旋转弹丸, 炸药装药, 发射安全性, 膛内运动, 炸药装药温度模型, 数值模拟

Abstract: This paper concerns on the safe launch of high-speed spinning projectile filled with pressed charge. A calculation model for the the variation in temperature of explosive charge due to friction in in the moving process in bore is established based on the theory of friction heating, heat transferring and temperature rising. A crash accident of a highly rotating projectile occurring after it exits from the muzzle is taken for an example. The model parameters, including the pressure on the bottom of charge, and the relative angular velocity of charge and projectile body, were obtained by using LS-DYNA software to simulate the internal ballistic process of projectile, and MATLAB was used to obtain their specific function form. The variation in temperature of explosive charge in the moving process in bore was culculated. The results show that an obvious relative rotation of charge and projectile body occurs when the environment temperature reaches to 50 ℃. Hence, an amount of heat is generated from the strong friction of charge and projectile body at the bottom of explosive charge. Part of the heat is transmitted to and warms the charge so that the highest temperature is 302.3 ℃ at the bottom of charge, which is much higher than the thermal decomposition temperature. A large number of hot spots are generated on the charge surface and grow rapidly in the confined space, finally causing exploding.

Key words: high-speedspinningprojectile, explosivecharge, safelaunch, internalballisticprocess, chargetemperaturemodel, numericalsimulation

中图分类号: