欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240893-.doi: 10.12382/bgxb.2024.0893

• • 上一篇    

基于IFPRM-SBLFS深度学习的飞行模式智能识别方法

孙世岩, 李琳, 朱惠民*(), 石章松, 梁伟阁   

  1. 海军工程大学, 湖北 武汉 430033
  • 收稿日期:2024-09-25 上线日期:2025-05-07
  • 通讯作者:
    * 邮箱:
  • 基金资助:
    湖北省自然科学基金项目(2023AFB900); 国防科技战略先导计划资助项目(22-ZLXD-02-02-04-002-01)

Intelligent Recognition of Flight Pattern Based on IFPRM-SBLFS Deep Learning

SUN Shiyan, LI Lin, ZHU Huimin*(), SHI Zhangsong, LIANG Weige   

  1. Naval University of Engineering, Wuhan 430033, Hubei, China
  • Received:2024-09-25 Online:2025-05-07

摘要:

在实际监测任务中,及时有效地识别飞行模式至关重要。然而,现有的飞行模式识别方法主观性强、模式单一,限制了在复杂情况下的飞行监控能力,在实际应用中有局限性,进而导致模式边界定位不精确、识别精度低。为此提出一种基于敏感边界和长飞行序列的飞行模式智能识别方法(Intelligent Flight Pattern Recognition Method for Sensitive Boundaries and Long Flight Sequences, IFPRM-SBLFS),以对飞行模式进行智能识别。为了更好地探索多模式飞行参数的空间关系,设计自适应图嵌入,针对不同持续时间的飞行模式提出去噪深度多尺度自动编码器,以及用于减轻模型损失的分类加权焦点损失和回归联合时空交集损失。为验证所提方法的优越性,采集多架民用航班的真实参数,涵盖11种飞行模式,通过人工标注构建飞行模式数据集。仿真计算结果表明:新模型能够在连续飞行架次中自动区分不同的飞行模式,并准确提取模式边界,识别准确率达到了99.07%,且无需任何预处理或后处理;新的智能识别方法可以有效提高精确度和敏感边界的飞行模式识别效果。

关键词: 飞行模式, 深度学习, 敏感边界, 长飞行序列, 自动编码器

Abstract:

Timely and effective identification of aircraft flight patterns is crucial in monitoring task. However, the existing flight pattern recognition methods have limitations in practical applications due to strong subjectivity and single pattern, which limits the flight monitoring capability in complex situations, and in turn leads to imprecise pattern boundary positioning and low recognition accuracy. For this reason, a flight pattern intelligent recognition method based on sensitive boundaries and long flight sequences is proposed for the intelligent recognition of flight states. In order to better explore the spatial relationships of multi-modal flight parameters, an adaptive graph embedding is designed. A denoising depth multi-scale autoencoder is proposed for the flight patterns at different durations, as well as the classification-weighted focal point loss and regression-joint spatio-temporal intersection loss for mitigating model loss. In order to verify the superiority of the proposed method, the real parameters of several civil flights covering 11 flight patterns are collected, and a flight state dataset is constructed by manual labelling. The results show that the proposed model is able to automatically distinguish different flight patterns in consecutive flight sorties and accurately extract the mode boundaries without any pre-processing or post-processing, with an identification accuracy of 99.07%. The intelligent recognition method can effectively improve the recognition accuracy and the flight state recognition of sensitive boundaries.

Key words: flight pattern, deep learning, sensitive boundary, long flight sequence, autoencoder

中图分类号: