欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (3): 240217-.doi: 10.12382/bgxb.2024.0217

• • 上一篇    下一篇

基于动态区域剔除与稠密地图构建的视觉SLAM算法

赵薇1, 王峰2,*(), 马星宇1, 翟伟光1, 孟鹏帅1   

  1. 1 太原理工大学 电子信息工程学院, 山西 太原 030002
    2 太原理工大学 电气与动力工程学院, 山西 太原 030002
  • 收稿日期:2024-03-26 上线日期:2025-03-26
  • 通讯作者:
  • 基金资助:
    山西省重点研发计划项目(202102150101008); 山西省留学人员科技活动项目择优资助项目(20230063)

Visual SLAM Algorithm Based on Dynamic Region Exclusion and Dense Map Construction

ZHAO Wei1, WANG Feng2,*(), MA Xingyu1, ZHAI Weiguang1, MENG Pengshuai1   

  1. 1 College of Electronic Information Engineering,Taiyuan University of Technology,Taiyuan 030002, Shanxi, China
    2 College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030002, Shanxi, China
  • Received:2024-03-26 Online:2025-03-26

摘要:

针对同步定位与建图(Simultaneous Localization and Mapping,SLAM)算法在动态场景中存在定位精度低且无法生成稠密地图的问题,提出一种基于动态区域剔除与稠密建图的视觉SLAM算法。在原ORB-SLAM3算法的基础上新建动态特征点检测线程,使用YOLOX网络获取动态场景语义信息及物体检测框,同时结合语义和几何约束检测特征点运动状态,提出动态特征点剔除算法,旨在精准实现动态特征点的剔除。随后设计稠密建图线程,基于关键帧及相应位姿构建稠密点云地图,利用地图中剩余的静态特征点,去除动态物体造成的重影,实现稠密地图的构建。在公开TUM数据集和真实动态环境进行验证,在TUM数据集的动态环境下,新算法有效消除了动态物体对位姿估计的影响,提升了SLAM算法在动态场景中的定位与建图的鲁棒性。

关键词: 动态环境, 目标检测, 几何约束, 稠密建图

Abstract:

The simultaneous localization and mapping (SLAM) algorithm has low positioning accuracy and cannot generate the dense maps in dynamic environment.For the above problems,a visual SLAM algorithm based on dynamic region exclusion and dense mapping is proposed.The algorithm creates a dynamic feature point detection thread into the original ORB-SLAM3 algorithm,and the YOLOX network is used to obtain the semantic information and object detection boxes in dynamic scenes.The algorithm detects the motion state of feature points by combining semantic and geometric constraints.A dynamic feature exclusion algorithm is proposed to accurately remove the dynamic feature points.Subsequently,a dense mapping thread is designed to construct dense point cloud maps based on keyframes and their corresponding poses.The remaining static feature points in the map are used to remove the ghosting caused by dynamic objects,thus achieving the construction of a dense map.The proposed algorithm is verified in the public TUM dataset and real dynamic environment.In the dynamic environment of TUM dataset,the proposed algorithm effectively eliminates the impact of dynamic objects on pose estimation,and improves the positioning and mapping accuracies of SLAM algorithm in dynamic scene.

Key words: dynamic environment, object detection, geometric constraint, dense mapping

中图分类号: