欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2015, Vol. 36 ›› Issue (6): 1015-1023.doi: 10.3969/j.issn.1000-1093.2015.06.008

• 论文 • 上一篇    下一篇

复杂约束条件下的再入轨迹迭代求解方法

张梦樱1, 唐乾刚1, 韩小军2, 张青斌1, 葛健全1   

  1. (1.国防科学技术大学 航天科学与工程学院,湖南 长沙 410003;2.第二炮兵装备部 高新技术办公室,北京 100085)
  • 收稿日期:2014-06-09 修回日期:2014-06-09 上线日期:2015-08-03
  • 作者简介:张梦樱(1990—), 女, 硕士研究生
  • 基金资助:
    国家自然科学基金项目(11272345); 国防科学技术大学预先研究基金项目(JC13-01-04)

Iterative Method to Solving Re-entry Trajectory Optimization with Complex Constraints

ZHANG Meng-ying1, TANG Qian-gang1, HAN Xiao-jun2, ZHANG Qing-bin1, GE Jian-quan1   

  1. (1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410003,Hunan,China;2Hitec Office,Equipment Department, PLA Second Artillery Force,Beijing 100085,China)
  • Received:2014-06-09 Revised:2014-06-09 Online:2015-08-03

摘要: 针对复杂非线性约束条件下,高超声速飞行器再入轨迹优化问题强非线性、多阶段、多约束的特点,提出了一种基于Gauss伪谱法的逐步添加约束的迭代求解方法。完善了规则形状禁飞区约束建模,提出更切实际的禁飞区模型以适应不同任务需求;提出逐步添加约束的迭代求解框架,该框架从解构复杂约束入手,由简至繁逐步添加约束并迭代求解逼近原复杂问题的解;以时间最短为优化目标,对考虑驻点热流密度、过载、动压和禁飞区等多约束的条件下的轨迹优化问题进行仿真计算。仿真结果验证了该算法的正确性、有效性和较好的鲁棒性。

关键词: 航空、航天科学技术基础学科, 轨迹优化, 最优控制, 禁飞区约束, 再入, Gauss伪谱法

Abstract: Re-entry trajectory optimization with complex constraints for hypersonic vehicles is a strong nonlinear optimal control problem with multiple phases and constraints. A trajectory optimization framework which adds the constraints successively based on Gauss pseudo-spectral method is proposed. The framework is used to build more accurate models of typical regular no-fly zone to provide multiple choices for mission plan, and then a successive approximation solving method is proposed to simplify the complexity of constraint model. In each iteration, the previous solutions to simpler problems are used as initial guesses to approach the solution of the original problem. Numerical examples for minimizing time of trajectory with multiple constraints including heat flux of stagnation point, overload, dynamic pressure and no-fly zone constraints are simulated to demonstrate the proposed method. The simulation results show that the phased adding constraints trajectory optimization framework has better robustness.

Key words: basic disciplines of aerospace and technology, trajectory optimization, optimal control, no-fly zone constraint, re-entry, Gauss pseudo spectral method

中图分类号: