[1] GUNZINGER M, CLARK B. Sustaining America's precision strike advantage[R]. Washington, DC, US: Center for Strategic and Budgetary Assessments, 2015. [2] GUNZINGER M, CLARK B. Winning the salvo competition: rebalancing America's air and missile defenses: CSBA6173-PGM2[R]. Washington, DC, US: Center for Strategic and Budgetary Assessments, 2016. [3] Office of the Under Secretary of Defense. Defense budget overview-fiscal year 2021 budget request: 6-78B6743[R]. Arlington, VA, US: United States Department of Defense, 2020. [4] 中 国航天科工集团公司第3研究院第310研究所. 精确制导武器领域科技发展报告[M]. 北京: 国防工业出版社, 2018. Beijing HIWING Scientific and Technological Information Institute. Scientific and technological development report in the field of precision-guided weapons[M]. Beijing: National Defense Industry Press, 2018. (in Chinese) [5] 庞威, 谢晓方, 郑力会, 等. 新型滑翔制导炸弹关键技术综述[J]. 飞航导弹, 2017, 47(10): 80-85. PANG W, XIE X F, ZHENG L H, et al. A summary of key technologies of new gliding guided bomb[J]. Aerodynamic Missile Journal, 2017, 47(10): 80-85. (in Chinese) [6] 于剑桥, 文仲辉, 梅跃松, 等. 战术导弹总体设计[M]. 北京: 北京航空航天大学出版社, 2010. YU J Q, WEN Z H, MEI Y S, et al. Overall design of tactical missile [M]. Beijing: Beihang University Press, 2010. (in Chinese) [7] 龙腾, 刘建, 孟令涛, 等. 多学科设计优化技术发展及在航空航天领域的应用[J]. 航空制造技术, 2016, 59(3): 24-33. LONG T, LIU J, MENG L T, et al. Development of multidisciplinary design optimization technology and its application in aerospace industry[J]. Aeronautical Manufacturing Technology, 2016, 59(3): 24-33. (in Chinese) [8] CASTELLINI F. Multidisciplinary design optimization for expendable launch vehicles [D]. Milan, Italy: The Polytechnic University of Milan, 2012. [9] BALESDENT M. Multidisciplinary design optimization of launch vehicles[D]. Nantes, France: Ecole Centrale de Nantes, 2011. [10] STEFFENS M. Trajectory-based launch vehicle performance analysis for design-space exploration in conceptual design[D]. Atlanta, GA, US: Georgia Institute of Technology, 2016. [11] PEREZ R E. A multidisciplinary optimization framework for flight dynamics and control integration in aircraft design[D]. Toronto, Ontario, Canada: University of Toronto, 2007. [12] PESTER M. Multi-disciplinary conceptual aircraft design using CEASIOM[D]. Hamburg, Germany: Hamburg University of Applied Sciences, 2010. [13] SCHNULO S L, CHIN J C, FALCK R D, et al. Development of a multi-phase mission planning tool for NASA X-57 Maxwell[C]∥Proceedings of AIAA Aviation Forum. Atlanta, GA, US: American Institute of Aeronautics and Astronautics, 2018. [14] 吴小胜, 雷娟棉, 吴甲生. “钻石背”弹翼气动特性数值模拟研究[J]. 兵工学报, 2010, 31(8): 1048-1052. WU X S, LEI J M, WU J S. Numerical simulation for aerodynamic characteristics of diamondback wing[J]. Acta Armamentaii, 2010, 31(8): 1048-1052. (in Chinese) [15] 罗宇辉. 直升机载空地导弹方案设计与性能分析[D]. 长沙: 国防科学技术大学, 2010. LUO Y H. Design and analysis of a certain air-to-ground missile[D]. Changsha: National University of Defense Technology, 2010. (in Chinese) [16] 蔡德宇. 某型卫星制导炸弹控制系统分析与设计[D]. 哈尔滨: 哈尔滨工业大学, 2014. CAI D Y. Analysis and design of guidance and control system for a type of satellite-guided bomb[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese) [17] 耿丽娜. 制导炸弹投放区计算研究[D]. 长沙: 国防科学技术大学, 2009. GENG L N. Study on release region calculation for guided bombs[D]. Changsha: National University of Defense Technology, 2009. (in Chinese) [18] STEWARD D V. The design structure system: a method for managing the design of complex systems[J]. IEEE Transactions on Engineering Management, 1981, EM-28(3): 71-74. [19] LANHAM C. Inertia calculation procedure for preliminary design:ASD-TR-79-5004[R]. Dayton, OH, US: Aeronautical Systems Division, Wright-Patterson Air Force Base, 1979. [20] OHANIAN O J. Mass properties calculation and fuel analysis in the conceptual design of uninhabited air vehicles[D]. Blacksburg, VA, US: Virginia Polytechnic Institute and State University, 2003. [21] ROSEMA C, DOYLE J, AUMAN L, et al. Missile DATCOM user's manual-2011 revision:AFRL-RB-WP-TR-2011-3071[R]. Dayton, OH,, US: Air Force Research Laboratory, Wright-Patterson Air Force Base, 2011. [22] 杨 维维, 陈小前, 李晓斌, 等. 通用导弹气动力计算软件DATCOM的开发与校验[J]. 固体火箭技术, 2006, 29(3): 161-164. YANG W W, CHEN X Q, LI X B, et al. Development and verification of a common software DATCOM for missile aerodynamic force calculation[J]. Journal of Solid Rocket Technology, 2006, 29(3): 161-164. (in Chinese) [23] 雷娟棉, 吴甲生. 制导兵器气动特性工程计算方法[M]. 北京: 北京理工大学出版社, 2015. LEI J M, WU J S. Engineering prediction methods of aerodyna- mic characteristics for guided weapon[M]. Beijing: Beijing Institute of Technology Press, 2015. (in Chinese) [24] 苗瑞生, 居贤铭, 吴甲生. 导弹空气动力学[M]. 北京: 国防工业出版社, 2006. MIAO R S, JU X M, WU J S. Missile aerodynamics[M]. Beijing: National Defense Industry Press, 2006. (in Chinese) [25] FLEEMAN E L. Tactical missile design[M]. Reston, VA, US: American Institute of Aeronautics and Astronautics, 2006. [26] 林德福, 王辉, 王江, 等. 战术导弹自动驾驶仪设计与制导律分析[M]. 北京: 北京理工大学出版社, 2012. LIN D F, WANG H, WANG J, et al. Autopilot design and gui -dance law analysis for tactical missiles[M]. Beijing: Beijing Institute of Technology Press, 2012. (in Chinese) [27] APKARIAN P, DAO M N, NOLL D. Parametric robust structured control design[J]. IEEE Transactions on Automatic Control, 2015, 60(7): 1857-1869. [28] GAHINET P, APKARIAN P. Automated tuning of gain-sche- duled control systems [C]∥Proceedings of 52nd IEEE Conference on Decision and Control. Florence, Italy: IEEE, 2013: 2740-2745. [29] GILL P E, WONG E, MURRAY W, et al. User's guide for SNOPT version 7.4: software for large-scale nonlinear programming[M]. San Diego, La Jolla, CA, US: University of California, 2015. [30] PATTERSON M A, HAGER W W, RAO A V. A ph mesh refinement method for optimal control[J]. Optimal Control Applications and Methods, 2015, 36(4): 398-421. [31] SUN Y, MENG X, LONG T, et al. A fast optimal Latin hypercube design method using an improved translational propagation algorithm[J]. Engineering Optimization, 2020, 52(7): 1244-1260. [32] 孙未蒙. 空地制导武器多约束条件下的制导律设计[D]. 长沙: 国防科学技术大学, 2008. SUN W M. Research on guidance law design with terminal impact angle constraints in air-to-surface guided weapon[D]. Changsha: National University of Defense Technology, 2008. (in Chinese) [33] 张道驰. 小型无人机载制导炸弹最优轨迹与精确制导技术研究[D]. 北京: 北京理工大学, 2016. ZHANG D C. Research on trajectory optimization and precision guidance technology of small UAV airborne guided bomb[D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese) [34] GHOSH P, CONWAY B A. Spatial statistical point prediction guidance for heating-rate-limited aeroassisted orbital transfer[J]. Acta Astronautica, 2015, 111: 257-269. [35] PHILLIPS C A, DRAKE J C. Trajectory optimization for a missile using a multitier approach[J]. Journal of Spacecraft and Rockets, 2000, 37(5): 653-662. [36] 刘恒军, 姜欢, 陈万春. 防空导弹动能杀伤多层弹道优化MDO算法应用[J]. 北京航空航天大学学报, 2010, 36(2): 145-149. LIU H J, JIANG H, CHEN W C. Application of MDO algorithm to multi-tier trajectory optimization design for a surface-to-air missile kinetic kill[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2): 145-149. (in Chinese) [37] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2008. QIAN X F, LIN R X, ZHAO Y N. Missile flight mechanics[M]. Beijing: Beijing Institute of Technology Press, 2008. (in Chinese) [38] HINSON D K. Assessment of the flight test methodology and separation characteristics of the AGM-154A joint standoff weapon (JSOW) on the F/A-18C/D hornet[D]. Knoxville, TN,US: University of Tennessee, 2006. [39] REGIS R G. Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions [J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 326-347.
|