[1] 解发瑜, 李刚, 徐忠昌. 高超声速飞行器概念及发展动态[J]. 飞航导弹, 2004(5):27-31,54. XIE F Y, LI G, XU Z C. Concept and development trend of hypersonic vehicles[J]. Aerodynamic Missile Journal, 2004(5):27- 31,54. (in Chinese) [2] 蔺君, 何英姿, 黄盘兴. 带推力高超声速飞行器非连续点火再入轨迹研究[J]. 兵工学报, 2020, 41(7): 1307-1316. LIN J, HE Y Z, HUANG P X. Research on reentry trajectory of powered hypersonic vehicle with discontinuous ignition[J]. Acta Armamentarii, 2020, 41(7): 1307-1316. (in Chinese) [3] 李文, 尚腾, 姚寅伟, 等. 速度时变情况下多飞行器时间协同制导方法研究[J]. 兵工学报, 2020, 41(6): 1096-1110. LI W, SHANG T, YAO Y W, et al. Research on time-cooperative guidance of multiple flight vehicles with time-varying velocity[J]. Acta Armamentarii, 2020, 41(6): 1096-1110. (in Chinese) [4] HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of the Astronautical Sciences, 1979, 26(3): 239-268. [5] ROENNEKE A J, MARKL A. Re-entry control to a drag-vs-energy profile[J]. Journal of Guidance Control & Dynamics, 1994, 17(5):916-920. [6] ZHANG W Q, CHEN W C, YU W B, et al. Autonomous entry guidance based on 3-D gliding trajectory analytical solution[C]∥Proceedings of 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering. Brussels, Belgium: IEEE, 2019:24-31. [7] ZHANG W Q, CHEN W C, YU W B. Entry guidance for high-L/D hypersonic vehicle based on drag-vs-energy profile[J]. ISA Transactions, 2018, 83:176-188. [8] BRAUN R D, POWELL R W. Predictor-corrector guidance algorithm for use in high-energy aerobraking system studies[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(3): 672-678. [9] JOSHI A, SIVAN K, AMMA S S. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1307-1318. [10] LIU S Y, LIANG Z X, LI Q D, et al. Predictor-corrector gui- dance for entry with terminal altitude constraint[C]∥Proceedings of 2016 35th Chinese Control Conference. Chengdu, China: IEEE, 2016: 5557-5562. [11] CHU H Y, LI J, DONG Y, et al. Improved MPSP method-based cooperative re-entry guidance for hypersonic gliding vehicles[J]. MATEC Web of Conferences, 2017, 114:01002. [12] 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5):197-212. FANG K, ZHANG Q K, NI K, et al. Time-coordinated reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):197-212. (in Chinese) [13] YU W B, CHEN W C, JIANG Z G, et al. Analytical entry gui- dance for coordinated flight with multiple no-fly-zone constraints [J]. Aerospace Science and Technology, 2018, 84:273-290. [14] LI Z H, HE B, WANG M H, et al. Time-coordination entry guidance for multi-hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 89:123-135. [15] 王肖, 郭杰, 唐胜景, 等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3): 322565. WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322565. (in Chinese) [16] YU J L, DONG X W, LI Q D, et al. Cooperative guidance stra- tegy for multiple hypersonic gliding vehicles system[J]. Chinese Journal of Aeronautics, 2020, 33(3):990-1005. [17] 周锐, 陈宗基. 强化学习在导弹制导中的应用[J]. 控制理论与应用, 2001, 18(5): 748-750. ZHOU R, CHEN Z J. Application of reinforcement learning in missile guidance[J]. Control Theory and Applications, 2001, 18(5): 748-750. (in Chinese) [18] 余跃, 王宏伦. 基于深度学习的高超声速飞行器再入预测校正容错制导[J]. 兵工学报, 2020, 41(4): 656-669. YU Y, WANG H L. Deep learning-based reentry predictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii, 2020, 41(4): 656-669. (in Chinese) [19] 高嘉时. 升力式再入飞行器轨迹优化与制导方法研究[D]. 武汉:华中科技大学, 2019. GAO J S. Research on reentry trajectory optimization and guidance method for lifting vehicle[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese) [20] 方 科, 张庆振, 倪昆, 等. 飞行时间约束下的再入制导律[J]. 哈尔滨工业大学学报, 2019, 51(10):90-97. FANG K, ZHANG Q Z, NI K, et al. Reentry guidance law with flight time constraint[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 90-97. (in Chinese) [21] 李天任, 杨奔, 汪韧, 等. 基于Q-Learning算法的再入飞行器制导方法[J]. 战术导弹技术, 2019(5):44-49. LI T R, YANG B, WANG R, et al. Reentry vehicle guidance method based on Q-learning algorithm[J]. Tactical Missile Technology, 2019(5):44-49. (in Chinese) [22] SUTTON E S, BARTO A G. Reinforcement learning: an introduction[M]. Cambridge, MA, US: MIT Press, 2005. [23] 郭宪, 方勇纯.深入浅出强化学习: 原理入门[M].北京:电子工业出版社,2018. GUO X, FANG Y C. Reinforcement learning: introduction to the principles [M]. Beijing: Publishing House of Electronics Industry, 2018. (in Chinese) [24] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533. [25] 周慧钟, 李忠应, 王瑾. 有翼导弹飞行动力学[M]. 北京:北京航空航天大学出版社, 1993. ZHOU H Z, LI Z Y, WANG J. Flight dynamics of winged missile[M]. Beijing: Beihang University Press, 1993. (in Chinese) [26] SONG S H, HA I J. A Lyapunov-like approach to performance analysis of 3-dimensional pure PNG laws[J]. IEEE Transactions on Aerospace & Electronic Systems, 2002, 30(1):238-248. [27] PHILLIPS T H. A common aero vehicle (CAV) model, description, and employment guide[R]. Arlington, VA, US: Schafer Corporation for AFRL and AFSPC, 2003.
|