[1] 孔德鹏, 常天庆, 郝娜. 基于对抗的突击武器与支援武器协同火力打击决策方法[J]. 兵工学报, 2019, 40(3):184-195. KONG D P, CHANG T Q, HAO N. Confrontation-based cooperative fire strike decision-making method of assault weapons and support weapons[J]. Acta Armamentarii, 2019, 40(3):184-195. (in Chinese) [2] 韦常柱, 郭继峰, 崔乃刚. 导弹协同作战编队队形最优保持控制器设计[J]. 宇航学报, 2010, 31(4):1043-1050. WEI C Z, GUO J F, CUI N G. Research on the missile formation keeping optimal control for cooperative engagement[J]. Journal of Astronautics, 2010,31(4): 1043-1050. (in Chinese) [3] VERA S, COBANO J A, HEREDIA G. An hp-adaptative pseudospectral method for collision avoidance with multiple UAVs in real-time applications[C]∥Proceedings of 2014 IEEE International Conference on Robotics and Automation.Hong Kong, China: IEEE, 2014: 4717-4722. [4] 白瑞光, 孙鑫, 陈秋双. 基于Gauss伪谱法的多UAV协同航迹规划[J]. 宇航学报, 2014, 35(9):1022-1029. BAI R G, SUN X, CHEN Q S. Multiple UAV cooperative trajectory planning based on Gauss pseudospectral method[J]. Journal of Astronautics, 2014, 35(9): 1022-1029. (in Chinese) [5] 王芳, 林涛, 张克. 多阶段高斯伪谱法在编队最优控制中的应用[J]. 宇航学报, 2015, 36(11): 1262-1269. WANG F, LIN T, ZHANG K. Application of multi-phase Gauss pseudospectral method in optimal control for formation[J]. Journal of Astronautics, 2015, 36(11): 1262-1269. (in Chinese) [6] FRESCONI F, CELMINS I, FAIRFAX L. Optimal parameters for maneuverability of affordable precision munitions[C]∥Procee- dings of 50th AIAA Aerospace Sciences Meeting. Nashville, TN, US: AIAA, 2012:3706-3727. [7] FRESCONI F. Range extension of gun-launched smart munitions[C]∥Proceedings of the 24th international symposium on ballistics. New Orleans, LA, US: National Defense Industrial Association: 2008:157-164. [8] 程仙垒, 彭双春, 郑伟. 多约束条件下非连续助推弹道方案设计与优化[J]. 系统工程与电子技术, 2015, 37(4):888-894. CHENG X L, PENG S C, ZHENG W. Discontinuous boosting trajectory project design and optimization with multi-constraints[J]. Systems Engineering and Electronics, 2015, 37(4): 888-894. (in Chinese) [9] 关成启, 陈聪. 基于Gauss伪谱法的助推-滑翔飞行器多阶段约束轨迹优化[J]. 宇航学报, 2011, 31(11):2512-2518. GUAN C Q, CHEN C. Multiphase path-constrained trajectory optimization for the boost-glide vehicle via the Gauss pseudospectral method[J]. Journal of Astronautic, 2010,31(11): 2512-2518. (in Chinese) [10] 明超, 孙瑞胜, 白宏阳. 基于hp自适应伪谱法的多脉冲导弹弹道优化设计[J]. 固体火箭技术, 2015,38(2):151-155. MING C, SUN R S, BAI H Y. Optimizing design of trajectory for multiple-pulse missiles based on hp-adaptive pseudo-spectral method[J]. Journal of Solid Rocket Technology, 2015,38(2):151-155. (in Chinese) [11] BRYCE I R, VULETICH I J, WILSON S A. A fractal fragmentation model for breakup of aerospace vehicles[C]∥Proceedings of Australian Space Sciences Conference. Sydney, Australia: National Space Society of Australia Ltd., 2009. [12] WILSON S A, VULETICH I J, FLETCHER D J. Guided weapon danger area & safety template generation - a new capability[C]∥Proceedings of AIAA Atmospheric Flight Mechanics Conference and Exhibit. Honolulu,HI, US: AIAA, 2008: 7123. [13] TOSATO J, VULETICH I, BRETT M. Improved range safety analysis for space vehicles using range safety template toolkit[C]∥Proceedings of the 5th International Association for the Advancement of Space Safety Conference. Versailles, France: IAASS, 2011. [14] BENSON D A, HUNTINGTON G T, THORVALDSEN T P. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance Control & Dynamics, 2006, 29(6): 1435-1439. [15] SEYWALD H, KUMAR R R. Method for automatic costate calculation[J]. Journal of Guidance Control & Dynamics, 2015, 19(6): 1252-1261. [16] 袁宴波, 张科, 薛晓东. 基于Radau伪谱法的制导炸弹最优滑翔弹道研究[J]. 兵工学报, 2014, 35(8):1179-1186. YUAN Y B, ZHANG K, XUE X D. Optimization of glide trajectory of guided bombs using a Radau pseudo-spectral method[J]. Acta Armamentarii, 2014, 35(8): 1179-1186. (in Chinese) [17] 刘超越, 张成. 基于高斯伪谱法的二级助推战术火箭多阶段轨迹优化[J]. 兵工学报, 2019, 40(2):292-302. LIU C Y, ZHANG C. Multi-stage trajectory optimization of two-stage boosting tactical rocket based on Gauss pseudospectral method[J]. Acta Armamentarii, 2019, 40(2):292-302. (in Chinese) [18] BAOMAR H, BENTLEY P J. Autonomous landing and go-around of airliners under severe weather conditions using artificial neural networks[C]∥Proceedings of 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems. Linkping, Sweden: IEEE, 2017: 162-167. [19] BAOMAR H, BENTLEY P J. Autonomous navigation and landing of large jets using artificial neural networks and learning by imitation[C]∥Proceedings of 2017 IEEE Symposium Series on Computational Intelligence. Honolulu, HI, US: IEEE, 2017: 1-10. [20] PENG H, BAI X L. Artificial neural network-based machine learning approach to improve orbit prediction accuracy[J]. Journal of Spacecraft and Rockets, 2018, 55(5): 1248-1260.
|