欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (3): 865-875.doi: 10.12382/bgxb/2021.0710

• • 上一篇    下一篇

基于虚拟再入角的快速离轨制动制导方法

权申明1,2(), 王竹1, 晁涛1(), 杨明1   

  1. 1 哈尔滨工业大学 控制与仿真中心,黑龙江 哈尔滨150080
    2 上海机电工程研究所,上海 201109
  • 收稿日期:2021-10-25 上线日期:2022-07-05
  • 作者简介:

    权申明(1992—),男,博士研究生,研究方向为飞行器制导与控制。E-mail:

  • 基金资助:
    国家自然科学基金项目(61627810); 国家自然科学基金项目(61790562); 国家自然科学基金项目(61403096)

Fast Deorbit Guidance Method Based on Virtual Reentry Angle

QUAN Shenming1,2(), WANG Zhu1, CHAO Tao1(), YANG Ming1   

  1. 1 Control and Simulation Center, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
    2 Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
  • Received:2021-10-25 Online:2022-07-05

摘要:

为满足再入飞行器快速离轨制动的需求,提出一种基于虚拟再入角的快速离轨制动制导方法。在分析脉冲离轨制动的制导机理的基础上,采用有限推力方式逐渐接近终端状态,满足再入角度和再入速度的交班需求;采用凸优化方法计算满足多终端约束的时间最优轨迹,结合有限推力制导算法的仿真结果,分析轨迹特点,提出虚拟再入角概念,设计考虑多终端约束的快速离轨制动的在线制导算法。分别从运算效率和制导精度两个方面,同现有方法进行比较,并在发动机推力大小与方向存在偏差情况下进行蒙特卡洛仿真。仿真结果表明,相比于现有算法,所提出的算法在保障同等控制精度的前提下,实现了快速离轨阶段快速的目标,且可以满足在线计算的需求。

关键词: 再入飞行器, 快速离轨制动, 虚拟再入角, 凸优化

Abstract:

To meet the requirement of rapid deorbit of reentry vehicles, an online guidance algorithm for rapid deorbit based on virtual reentry angle is proposed. On the basis of analyzing the guidance mechanism of the pulse deorbit, the finite thrust method is used to gradually approach the terminal state so as to meet the shift requirements of the reentry angle and reentry speed. The convex optimization method is used to calculate the time-optimal trajectory that meets the multi-terminal constraints. Combined with the simulation results of the finite thrust guidance algorithm, the trajectory characteristics are analyzed, the concept of virtual reentry angle is proposed, and an online guidance algorithm for fast deorbit considering multi-terminal constraints is designed. The proposed method is compared with the existing methods from the aspects of computational efficiency and guidance accuracy, Monte-Carlo simulations are carried out under the condition of deviation of the thrust magnitude and direction of the engine. The simulation results show that compared to the existing algorithms, the proposed algorithm achieves the goal of rapidity in the deorbit stage and can meet the needs of online computing while ensuring the same control accuracy.

Key words: reentry vehicle, fast deorbit, virtual reentry angle, convex optimization