欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2022, Vol. 43 ›› Issue (2): 337-344.doi: 10.3969/j.issn.1000-1093.2022.02.011

• 论文 • 上一篇    下一篇

基于生成对抗网络的密钥生成方法及其在微光图像加密中的应用

李锦青1,2, 刘泽飞1,2, 满振龙1,2   

  1. (1.长春理工大学 计算机科学技术学院, 吉林 长春 130022; 2.吉林省网络与信息安全重点实验室, 吉林 长春 130022)
  • 收稿日期:2021-03-02 修回日期:2021-03-02 接受日期:2021-03-02 上线日期:2022-03-28
  • 作者简介:刘泽飞(1998—),女,硕士研究生。E-mail: 1486873001@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFB1800303);吉林省科技厅自然科学基金项目(20190201188JC);吉林省高等教育教学改革研究课题(JLLG685520190725093004)

Key Generation Method Based on Generative Adversarial Network and Its Application in Low-light-level Image Encryption

LI Jinqing1,2, LIU Zefei1,2, MAN Zhenlong1,2   

  1. (1.School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, Jilin, China;2.Jilin Key Laboratory of Network and Information Security, Changchun 130022, Jilin China)
  • Received:2021-03-02 Revised:2021-03-02 Accepted:2021-03-02 Online:2022-03-28

摘要: 生成对抗网络(GAN)是一种深度学习模型,是近年来在复杂分布环境下进行无监督学习的最有前景的方法之一。将GAN开创性地引入到随机密钥生成中,利用GAN对超混沌系统产生的随机密钥进行学习和训练。GAN通过学习训练生成的随机数与混沌系统生成的随机数有着很多相似的优点,如随机性和敏感性,但是同时它也具备了混沌系统所生成随机数不具备的特征,如不可复现性。GAN训练生成的随机数在对信噪比低、灰度等级少的微光图像加密中显示出其快速性与更高的安全性。本文将GAN引入到随机密钥生成中,利用量子细胞神经网络系统产生的伪随机数作为GAN的训练集,通过GAN对超混沌系统产生的随机密钥进行学习和训练得到一个随机密钥池,最后针对这种密钥生成方案在微光图像加密中的应用,提出了一种新的微光图像加密算法,该算法给出了一种与明文相关的2D指针,随机选择密钥池中的两个相位掩膜来实现微光图像的安全。结果表明该学习型密钥生成方案所生成的加密密钥可以通过美国国家标准技术研究所的所有随机测试,并且该方案能够有效抵抗差分攻击、已知明文/选择明文攻击和各种统计分析。同时,与其他同类算法的性能比较也进一步表明了该模型的优越性。

关键词: 密钥生成, 生成对抗网络, 深度学习, 微光图像, 加密算法

Abstract: Generative adversarial network (GAN) is a deep learning model, which is one of the most promising methods for unsupervised learning in complex distributed environment in recent years. The random numbers generated by GAN and chaotic systems have many similar advantages, such as randomness and sensitivity. But at the same time,the random numbers generated by GAN have the features that the random numbers generated by chaotic systems do not have, such as non-reproducibility.The random number generated by GAN training shows its rapidity and higher security in the encryption of low-light-level images with low signal-to-noise ratio and few gray levels. GAN is introduced into the random key generation. The pseudo-random number generated by quantum cellular neural network (QCNN) system is used as the training set of GAN, and a completely random key pool is obtained through GAN to learn and train the random key generated by hyperchaotic system. For the application of the proposed key generation method in low-light-level image encryption, a new low-light-level image encryption algorithm is proposed, which uses a 2D-pointer related to the plaintext to randomly select two phase masks in the key pool to achieve the security of low-light-level images. The results show that the encryption key generated by the learning key generation scheme can pass all the random tests of The National Institute of Standards and Technology, and the scheme can resist differential attacks by cryptanalysts, known/chosen plaintext attacks, and various statistical analyses. The performance comparison with other similar algorithms also shows the superiority of the proposed cryptosystem.

Key words: keygeneration, generativeadversarialnetwork, deeplearning, low-light-levelimage, encryptionalgorithm

中图分类号: