[1] 尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016,42(10): 1466-1489. YIN Hong-peng, CHEN Bo, CHAI Yi, et al. Vision-based object detection and tracking[J]. Acta Automatica Sinica, 2016,42(10): 1466-1489. (in Chinese) [2] 王铁虎, 焦爱泉, 冯连仲, 等. 精确打击作战与装甲装备未来发展[J]. 兵工学报, 2010,31(增刊2): 59-65. WANG Tie-hu, JIAO Ai-quan, FENG Lian-zhong, et al. Future development of armored equipment and precise attack operation [J]. Acta Armamentarii, 2010,31(S2): 59-65. (in Chinese) [3] 郭明玮, 赵宇宙, 项俊平, 等. 基于支持向量机的目标检测算法综述[J]. 控制与决策, 2014, 29(2): 193-200. GUO Ming-wei, ZHAO Yu-zhou, XIANG Jun-ping, et al. Review of object detection methods based on SVM[J]. Control and Decision, 2014, 29(2): 193-200. (in Chinese) [4] Felzenszwalb P, Girshick R, Allester D M, et al. Object detection with discriminatively trained part based models [J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. [5] 吴青青,许廷发,闫辉, 等. 复杂背景下的颜色分离背景差分目标检测方法[J]. 兵工学报, 2013, 34(4): 501-506. WU Qing-qing, XU Ting-fa, YAN Hui, et al. An improved color separation method for object detection in complex background [J]. Acta Armamentarii, 2013, 34(4): 501-506. (in Chinese) [6] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]∥Proceedings of the 2012 Advances in Neural Information Processing Systems. Cambridge, MA, US: The MIT Press, 2012: 1097-1105. [7] Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]∥Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL ,US: IEEE, 2009: 248-255. [8] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH,US: IEEE, 2014: 580-587. [9] Uijlings J R, Sande V D, Gevers K E, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
[10] Everingham M, Van G L, Williams C K, et al. The Pascal visual object classes (VOC) challenge [J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [11] Girshick R. Fast R-CNN[C]∥Proceedings of the IEEE 14th International Conference on Computer Vision. Chile: IEEE, 2015: 1440-1448. [12] Ren S Q, He K M, Girshick R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]∥Proceedings of the 2015 Advances in Neural Information Processing Systems. Cambridge, MA, US: MIT Press, 2015: 91-99. [13] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context [C]∥Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 740-755. [14] Zeiler M D, Fergus R. Visualizing and understanding convolutional neural networks [C]∥Proceedings of the 13rd European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 818-833. [15] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10) [2016-11-15]. http:∥arxiv.orb/abs/1409.1556. [16] Redmon J, Divvala S K, Girshick R B, et al. You only look once: unified, real-time object detection [EB/OL]. (2016-05-09) [2016-11-14]. http:∥arxiv.orb/abs/1506.02640. [17] Liu W, Anguelov D, Erhan D, et al. SSD: single shot multi box detector [EB/OL]. (2016-03-30) [2016-11-15]. http:∥arxiv.orb/abs/1512.02325. [18] Oquab M, Bottou L, Laptev I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]∥Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH,US: IEEE, 2014: 1717-1724. [19] 石祥滨, 房雪键, 张德园, 等. 基于深度学习混合模型迁移学习的图像分类[J]. 系统仿真学报, 2016,28(1): 167-174. SHI Xiang-bin, FANG Xue-jian, ZHANG De-yuan, et al. Image classification based on mixed deep learning model transfer learning[J]. Journal of System Simulation, 2016, 28(1): 167-174. (in Chinese) [20] LeCun Y, Boser B, Denker J, et al. Back propagation applied to hand written zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. [21] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]∥Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, US: IEEE, 2015:1-9. [22] Kong T, Yao A B, Chen Y, et al. HyperNet: towards accurate region proposal generation and joint object detection [EB/OL]. (2016-04-03) [2016-11-14]. http:∥arxiv.orb/abs/1604.00600. [23] Bell S, Zitnick C L, Bala K, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks [EB/OL]. (2015-12-14) [2016-11-14]. http:∥arxiv.orb/abs/1512.04143. [24] Cai Z, Fan Q, Feris R, et al. A unified multi-scale deep convolutional neural network for fast object detection [EB/OL]. (2016-07-25) [2016-11-14]. http:∥arxiv.orb/abs/1607.07155. [25] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]∥Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA,US: IEEE, 2015: 3431-3440. [26] Jia Y. Caffe: an open source convolutional architecture for fast feature embedding [EB/OL]. [2016-10-15]. http:∥caffe.berkeleyvision.org/2013. [27] Hosang J, Benenson R, Dollar P, et al. What makes for effective detection proposals? [EB/OL]. (2015-08-01) [2016-11-14]. http:∥arxiv.orb/abs/1502. 05082.
第38卷 第9期2017 年9月兵工学报ACTA ARMAMENTARIIVol.38No.9Sep.2017
|