欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2017, Vol. 38 ›› Issue (5): 892-899.doi: 10.3969/j.issn.1000-1093.2017.05.008

• 论文 • 上一篇    下一篇

发射药生产过程中静电锥体放电规律数值模拟研究

卫水爱1,2, 白春华1, 李春光2   

  1. (1.北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081; 2.兵器工业安全技术研究所, 北京 100053)
  • 收稿日期:2016-09-07 修回日期:2016-09-07 上线日期:2017-07-03
  • 作者简介:卫水爱(1981—), 女, 高级工程师,博士研究生。E-mail: 53064070@qq.com
  • 基金资助:
    北京理工大学爆炸科学与技术国家重点实验室自主课题项目(ZDKT009-02)

Simulation of Electrostatic Cone Discharge in Propellant Production Process

WEI Shui-ai1,2, BAI Chun-hua1, LI Chun-guang2   

  1. (1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081,China;2.Safety Technology Research Institute of Ordance Industry, Beijing 100053,China)
  • Received:2016-09-07 Revised:2016-09-07 Online:2017-07-03

摘要: 静电锥体放电是引发发射药燃烧爆炸事故的重要放电形式。为了研究其在生产过程中的放电规律,基于静电场高斯定理,利用ANSYS有限元模型,对单基发射枪药的存储、转运料斗中的静电场进行了数值模拟,并进行了实验验证,实验值与模拟值吻合较好。通过数值模拟得到了单基发射枪药料斗内静电场的分布规律,以及静电场随物料厚度的变化规律。研究结果表明:单基发射枪药料斗底部电场强度最大、侧壁次之、物料表面电场强度最小;最大电位出现在物料内部,而不是物料表面;物料厚度在0.05 m时,底部最大电场强度为6.92×106 V/m,大于空气击穿电场强度,这表明在料斗刚罐充发射药时,就可能在料斗底部发生静电锥体放电;随着物料厚度的增加,料斗内的电场强度也随之增大,当发射药厚度增加到0.29 m时,底部最大电场强度已增大至1.41×107 V/m, 侧壁和料面电场强度也随之增大,料斗内锥体放电更加频繁,点燃发射药的危险性也更大。

关键词: 兵器科学与技术, 静电, 发射药, 锥体放电, 数值模拟

Abstract: Electrostatic cone discharge is an important discharge type causing propellant explosion. In order to study the discharge rule in the production process, the ANSYS finite element model is used to simulate the electrostatic field in the storage and transport hopper of the single-base gun propellant based on Gauss theorem of electrostatic field, and the simulated results are compared with the experimental results. The distribution of electrostatic field and its variation with the thickness of single-base gun propellant are simulated. Results show that the largest electric field intensity is at the bottom of the single-base gun propellant hopper, and the electric field intensity on material surface is minimum.The maximum potential appears in the inner of material, rather than on the material surface. When the material thickness is 0.05 m, the maximum field intensity at the bottom of is 6.92×106 V/m , which is greater than the air breakdown strength. This shows that the electrostatic cone discharge may happen at the bottom of the hopper when the hopper is just tank filled with propellant. The electric field intensity in hopper also increases with the increase in the thickness of material. When the propellant thickness is increaseed to 0.29 m, the maximum field intensity at the bottom is increased to 1.41×107 V/m, the field strengths on side wall and material surface also increase, the cone discharge is more frequent, and the fire risk of propellant is greater. Key

Key words: ordnancescienceandtechnology, electrostatic, propellant, conedischarge, simulation

中图分类号: